next up previous
Next: Infinite body, cylindrical coordinate, Up: Heat Equation. Transient Heat Previous: Small-time GF, transient cases

Cylindrical Coordinates. Transient 1-D.

The Heat Equation for transient 1-D Green's Functions in cylindrical-radial coordinates is

$\displaystyle {\frac{1}{r}}$$\displaystyle {\frac{\partial }{\partial r}}$$\displaystyle \left(\vphantom{ r\frac{\partial G}{\partial r}}\right.$r$\displaystyle {\frac{\partial G}{\partial r}}$ $\displaystyle \left.\vphantom{ r\frac{\partial G}{\partial r}}\right)$ + $\displaystyle {\frac{1}{\alpha }}$$\displaystyle \delta$(r - r$\scriptstyle \prime$)$\displaystyle \delta$(t - $\displaystyle \tau$) = $\displaystyle {\frac{1}{\alpha }}$$\displaystyle {\frac{\partial G}{\partial t}}$    

Note that the cylindrical-radial Dirac delta function $ \delta$(r - r$\scriptstyle \prime$) has vector arguments and has units of [ meters-2].

 

Kevin D. Cole
2002-12-31