Next: Radial-spherical coordinates. Transient 1-D.
Up: Cylindrical Coordinates. Transient 1-D.
Previous: Solid cylinder transient 1-D.
R11 Hollow cylinder a < r < b, with G = 0 (Dirichlet) at r = a and r = b.
GR11(r, t r ,
) |
= |
 exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x ![$\displaystyle {\frac{\beta _{m}^{2}\,\left[ J_{0}(\beta _{m})\,\right]
^{2}R(r)...
...ft[ J_{0}(\beta _{m})\,\right] ^{2}-\left[
J_{0}(\beta _{m}b/a)\,\right] ^{2}}}$](img296.gif) |
|
where R(r) |
= |
J0( )Y0( ) - Y0( )J0( ) |
|
with eigenvalues given by
J0(
)Y0(
b/a) - Y0(
)J0(
b/a) = 0.
R12 Hollow cylinder a < r < b, with G = 0 (Dirichlet) at r = a and
G/
r = 0 (Neumann)at r = b.
GR12(r, t r ,
) |
= |
 exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x R(r) R(r ) |
|
where R(r) |
= |
J0( )Y1( ) - Y0( )J1( ) |
|
with eigenvalues given by
J0(
)Y1(
b/a) - Y0(
)J1(
b/a) = 0.
R13 Hollow cylinder a < r < b, with G = 0 (Dirichlet) at r = a and
k
G/
r + hG = 0 (convection) at r = b.
GR13(r, t r ,
) |
= |
 exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x R(r) R(r ) |
|
where R(r) |
= |
S0J0( ) - V0Y0( ) |
|
with V0 |
= |
- J1( ) + BJ0( ) |
|
S0 |
= |
- Y1( ) + BY0( ) |
|
B |
= |
ha/k |
|
Eigenvalues are given by
S0J0(
) - V0Y0(
) = 0
.
R21 Hollow cylinder a < r < b, with
G/
r = 0 (Dirichlet) at r = a and G = 0 (Neumann) at r = b.
GR21(r, t r ,
) |
= |
 exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x R(r) R(r ) |
|
where R(r) |
= |
J0( )Y0( ) - Y0( )J0( ) |
|
with eigenvalues given by
J1(
)Y0(
b/a) - Y1(
)J0(
b/a) = 0.
R22 Hollow cylinder a < r < b, with
G/
r = 0 (Dirichlet) at r = a and G = 0 (Neumann) at r = b.
GR22(r, t r ,
) |
= |
+  exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x R(r) R(r ) |
|
where R(r) |
= |
J0( )Y1( ) - Y0( )J1( ) |
|
with eigenvalues given by
J1(
)Y1(
b/a) - Y1(
)J1(
b/a) = 0.
R23 Hollow cylinder a < r < b, with
G/
r = 0 (Neumann) at r = a and
k
G/
r + hG = 0 (convection) at r = b.
GR23(r, t r ,
) |
= |
 exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x R(r) R(r ) |
|
where R(r) |
= |
S0J0( ) - V0Y0( ) |
|
with V0 |
= |
- J1( ) + BJ0( ) |
|
S0 |
= |
- Y1( ) + BY0( ) |
|
B |
= |
ha/k |
|
Eigenvalues are given by
S0J1(
) - V0Y1(
) = 0
.
R31 Hollow cylinder a < r < b, with
- k
G/
r + hG = 0 (convection) at r = a and G = 0 (Dirichlet) at r = b.
GR31(r, t r ,
) |
= |
 exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x R(r) R(r ) |
|
where R(r) |
= |
J0( )Y0( ) - Y0( )J0( ) |
|
with U0 |
= |
- J1( ) + BJ0( ) |
|
W0 |
= |
- Y1( ) + BY0( ) |
|
B |
= |
ha/k |
|
Eigenvalues are given by
U0Y0(
b/a) - W0J0(
b/a) = 0.
R32 Hollow cylinder a < r < b, with
- k
G/
r + hG = 0 (convection) at r = a and
G/
r = 0 (Neumann) at r = b.
GR32(r, t r ,
) |
= |
 exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x R(r) R(r ) |
|
where R(r) |
= |
J0( )Y1( ) - Y0( )J1( ) |
|
with U0 |
= |
- J1( ) + BJ0( ) |
|
W0 |
= |
- Y1( ) + BY0( ) |
|
B |
= |
ha/k |
|
Eigenvalues are given by
U0Y1(
b/a) - W0J1(
b/a) = 0.
R33 Hollow cylinder a < r < b, with
- k
G/
r + h1G = 0 (convection) at r = a and
k
G/
r + h2G = 0
(convection) at r = b.
GR33(r, t r ,
) |
= |
 exp
-  (t - )/a2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/a^{2}}\right]$](img295.gif) |
|
|
|
x R(r) R(r ) |
|
where R(r) |
= |
S0J0( ) - V0Y0( ) |
|
with S0 |
= |
- Y1( ) + B2Y0( ) |
|
with U0 |
= |
- J1( ) - B1J0( ) |
|
V0 |
= |
- J1( ) + B2J0( ) |
|
W0 |
= |
- Y1( ) + B1Y0( ) |
|
B1 |
= |
; B2 =  |
|
Eigenvalues are given by
S0U0 - V0W0 = 0.
Next: Radial-spherical coordinates. Transient 1-D.
Up: Cylindrical Coordinates. Transient 1-D.
Previous: Solid cylinder transient 1-D.
Kevin D. Cole
2002-12-31