Next: Hollow cylinder, transient 1-D.
Up: Cylindrical Coordinates. Transient 1-D.
Previous: Infinite body with circular
R01 Solid cylinder 0 < r < b, with G = 0 (Dirichlet) at r = b.
GR01(r, t r ,
) |
= |
 exp
-  (t - )/b2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right]$](img282.gif) |
|
|
|
x ![$\displaystyle {\frac{J_{0}(\beta _{m}r/b)\,J_{0}(\beta _{m}r^{\prime }/b)}{\left[
J_{1}(\beta _{m})\,\right] ^{2}}}$](img283.gif) |
|
with eigenvalues given by
J0(
) = 0.
R02 Solid cylinder 0 < r < b, with
G/
r = 0
(Neumann) at r = b.
GR02(r, t r ,
) |
= |
 1 + exp
-  (t - )/b2
![$\displaystyle \left.\vphantom{
1+\sum_{m=1}^{\infty }\exp \left[ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}%
\right] }\right.$](img288.gif) |
|
|
|
x
![$\displaystyle \left.\vphantom{ \times \frac{J_{0}(\beta _{m}r/b)\,J_{0}(\beta _{m}r^{\prime }/b)}{%
\left[ J_{0}(\beta _{m})\,\right] ^{2}}}\right]$](img291.gif) |
|
with eigenvalues given by
J1(
) = 0.
R03 Solid cylinder 0 < r < b, with
k
G/
r + hG = 0 (convection) at r = b.
GR03(r, t r ,
) |
= |
 exp
-  (t - )/b2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right]$](img282.gif) |
|
|
|
x ![$\displaystyle {\frac{\beta _{m}^{2}J_{0}(\beta _{m}r/b)\,J_{0}(\beta _{m}r^{\prime
}/b)}{\left[ J_{0}(\beta _{m})\,\right] ^{2}(B^{2}+\beta _{m}^{2})}}$](img292.gif) |
|
with eigenvalues given by -
J1(
) + BJ0(
) = 0
, and B = hb/k.
Next: Hollow cylinder, transient 1-D.
Up: Cylindrical Coordinates. Transient 1-D.
Previous: Infinite body with circular
Kevin D. Cole
2002-12-31