next up previous
Next: Hollow cylinder, transient 1-D. Up: Cylindrical Coordinates. Transient 1-D. Previous: Infinite body with circular

Solid cylinder transient 1-D.

R01 Solid cylinder 0 < r < b, with G = 0 (Dirichlet) at r = b.
GR01(r, t $\displaystyle \left\vert\vphantom{ \,r^{\prime },\tau }\right.$ r$\scriptstyle \prime$,$\displaystyle \tau$ $\displaystyle \left.\vphantom{ \,r^{\prime },\tau }\right.$) = $\displaystyle {\frac{1}{\pi b^{2}}}$$\displaystyle \sum_{m=1}^{\infty }$exp$\displaystyle \left[\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right.$ - $\displaystyle \beta_{m}^{2}$$\displaystyle \alpha$(t - $\displaystyle \tau$)/b2$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right]$  
    x $\displaystyle {\frac{J_{0}(\beta _{m}r/b)\,J_{0}(\beta _{m}r^{\prime }/b)}{\left[
J_{1}(\beta _{m})\,\right] ^{2}}}$  

with eigenvalues given by J0($ \beta_{m}^{}$) = 0.


R02 Solid cylinder 0 < r < b, with $ \partial$G/$ \partial$r = 0 (Neumann) at r = b.

GR02(r, t $\displaystyle \left\vert\vphantom{ \,r^{\prime },\tau }\right.$ r$\scriptstyle \prime$,$\displaystyle \tau$ $\displaystyle \left.\vphantom{ \,r^{\prime },\tau }\right.$) = $\displaystyle {\frac{1}{\pi b^{2}}}$$\displaystyle \left[\vphantom{
1+\sum_{m=1}^{\infty }\exp \left[ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}%
\right] }\right.$1 + $\displaystyle \sum_{m=1}^{\infty }$exp$\displaystyle \left[\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}%
}\right.$ - $\displaystyle \beta_{m}^{2}$$\displaystyle \alpha$(t - $\displaystyle \tau$)/b2$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}%
}\right]$ $\displaystyle \left.\vphantom{
1+\sum_{m=1}^{\infty }\exp \left[ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}%
\right] }\right.$  
    $\displaystyle \left.\vphantom{ \times \frac{J_{0}(\beta _{m}r/b)\,J_{0}(\beta _{m}r^{\prime }/b)}{%
\left[ J_{0}(\beta _{m})\,\right] ^{2}}}\right.$ x $\displaystyle {\frac{J_{0}(\beta _{m}r/b)\,J_{0}(\beta _{m}r^{\prime }/b)}{%
\left[ J_{0}(\beta _{m})\,\right] ^{2}}}$ $\displaystyle \left.\vphantom{ \times \frac{J_{0}(\beta _{m}r/b)\,J_{0}(\beta _{m}r^{\prime }/b)}{%
\left[ J_{0}(\beta _{m})\,\right] ^{2}}}\right]$  

with eigenvalues given by J1($ \beta_{m}^{}$) = 0.


R03 Solid cylinder 0 < r < b, with k$ \partial$G/$ \partial$r + hG = 0 (convection) at r = b.

GR03(r, t $\displaystyle \left\vert\vphantom{ \,r^{\prime },\tau }\right.$ r$\scriptstyle \prime$,$\displaystyle \tau$ $\displaystyle \left.\vphantom{ \,r^{\prime },\tau }\right.$) = $\displaystyle {\frac{1}{\pi b^{2}}}$$\displaystyle \sum_{m=1}^{\infty }$exp$\displaystyle \left[\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right.$ - $\displaystyle \beta_{m}^{2}$$\displaystyle \alpha$(t - $\displaystyle \tau$)/b2$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right]$  
    x $\displaystyle {\frac{\beta _{m}^{2}J_{0}(\beta _{m}r/b)\,J_{0}(\beta _{m}r^{\prime
}/b)}{\left[ J_{0}(\beta _{m})\,\right] ^{2}(B^{2}+\beta _{m}^{2})}}$  

with eigenvalues given by - $ \beta_{m}^{}$J1($ \beta_{m}^{}$) + BJ0($ \beta_{m}^{}$) = 0 , and B = hb/k.



next up previous
Next: Hollow cylinder, transient 1-D. Up: Cylindrical Coordinates. Transient 1-D. Previous: Infinite body with circular
Kevin D. Cole
2002-12-31