GX11(x, t | x![]() ![]() |
= | [4![]() ![]() ![]() |
|
x ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX11(x, t | x![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX12(x, t![]() ![]() ![]() ![]() |
= | [4![]() ![]() ![]() |
|
x ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX12(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
where ![]() |
= | (2m - 1)(![]() |
GX13(x, t![]() ![]() ![]() ![]() |
![]() |
[4![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
- ![]() ![]() ![]() ![]() ![]() |
|||
x erfc![]() ![]() ![]() ![]() |
GX13(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
x sin(![]() ![]() ![]() ![]() |
|||
with ![]() ![]() |
GX14(x, t![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
x sin(![]() ![]() ![]() ![]() |
|||
with ![]() ![]() |
= | ![]() ![]() |
|
and where C2 | = | ![]() |
GX15(x, t![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
with Nm = ![]() |
|||
eigencondition (B2 - C2![]() ![]() ![]() ![]() |
|||
and where C2 = ![]() ![]() |
GX21(x, t![]() ![]() ![]() ![]() |
= | [4![]() ![]() ![]() |
|
x ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX21(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
where ![]() |
= | (2m - 1)(![]() |
GX22(x, t![]() ![]() ![]() ![]() |
= | [4![]() ![]() ![]() |
|
x ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX22(x, t![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX23(x, t![]() ![]() ![]() ![]() |
![]() |
[4![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
- ![]() ![]() ![]() ![]() ![]() |
|||
x erfc![]() ![]() ![]() ![]() |
GX23(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() |
|
x ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
with ![]() ![]() |
= | B2 and where B2 = h2L/k. |
GX24(x, t![]() ![]() ![]() ![]() |
= | ![]() |
|
+ ![]() ![]() ![]() ![]() ![]() ![]() |
|||
Nm | = | ![]() |
|
with tan![]() |
= | - C2![]() ![]() |
GX25(x, t![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
with Nm = ![]() |
|||
eigencondition ![]() ![]() ![]() |
|||
and where B2 = ![]() ![]() ![]() |
GX31(x, t![]() ![]() ![]() ![]() |
![]() |
[4![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
- ![]() ![]() ![]() ![]() ![]() |
|||
x erfc![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX31(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
x sin![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
where ![]() ![]() |
= | - B and B = hL/k. |
GX32(x, t![]() ![]() ![]() ![]() |
![]() |
[4![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
- ![]() ![]() ![]() ![]() ![]() |
|||
x erfc![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX32(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
x cos![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
with ![]() ![]() |
= | B and where B = hL/k. |
GX33(x, t![]() ![]() ![]() ![]() |
![]() |
[4![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
- ![]() ![]() ![]() ![]() ![]() |
|||
x erfc![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
- ![]() ![]() ![]() ![]() ![]() |
|||
x erfc![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
GX33(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() |
|
x ![]() ![]() ![]() ![]() ![]() |
|||
x ![]() |
|||
with tan![]() |
= | ![]() ![]() ![]() |
GX34(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() |
|
where Xm(x) | = | B1sin(![]() ![]() ![]() |
|
Nm | = | ![]() ![]() ![]() ![]() ![]() |
|
x ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
with tan![]() |
= | ![]() ![]() ![]() |
GX35(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() |
|
where Xm(x) | = | B1sin(![]() ![]() ![]() |
|
Nm | = | ![]() ![]() ![]() |
|
x ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
with tan![]() |
= | ![]() |
|
and B1 | = | ![]() ![]() ![]() |
GX41(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() |
|
x sin![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
Nm = ![]() ![]() ![]() ![]() ![]() |
|||
where ![]() ![]() |
= | 1/C1, C1 = ![]() |
GX42(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
where Xm(x) | = | cos(![]() ![]() ![]() |
|
N0 | = | 1 + C1, Nm = ![]() ![]() ![]() ![]() ![]() |
|
where ![]() ![]() |
= | -1/C1, C1 = ![]() |
GX51(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() |
|
where Xm(x) | = | Dmsin(![]() ![]() |
|
Nm | = | ![]() ![]() ![]() ![]() ![]() ![]() |
|
where tan![]() |
= | ![]() ![]() ![]() |
GX52(x, t![]() ![]() ![]() ![]() |
= | ![]() ![]() ![]() ![]() ![]() ![]() |
|
where Xm(x) | = | Dmsin(![]() ![]() |
|
Nm | = | ![]() ![]() ![]() ![]() ![]() ![]() |
|
where tan![]() |
= | Dm, C1 = ![]() ![]() |