next up previous
Next: Solid cylinder, steady 1-D. Up: Radial-Cylindrical Coordinates. Steady 1-D. Previous: Infinite body, cylindrical coordinate,

Infinite body with a circular hole, steady 1-D.

R10 Infinite body surrounding a circular hole, a $ \leq$ r < $ \infty$, with G = 0 (Dirichlet) at r = a.

2$\displaystyle \pi$GR10(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
\ln (r/a) & \text{for }r<r...
...me } \\
\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
\ln (r/a) & \text{for }r<r^{\prime } \\
\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
\ln (r/a) & \text{for }r<r^...
...me } \\
\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$

R20 Infinite body surrounding a circular hole, a $ \leq$ r < $ \infty$, with $ \partial$G/$ \partial$r = 0 (Neumann) at r = a. Note that this geometry requires a pseudo GF, denoted H. The temperature solution found from a pseudo GF requires that the total volumetric heat flow is equal to the boundary heat flow, and the spatial average temperature in the body must be supplied as a known condition.

2$\displaystyle \pi$HR20(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
-\ln (r^{\prime }/a) & \te...
...r<r^{\prime } \\
-\ln (r/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
-\ln (r^{\prime }/a) & \text{for }r<r^{\prime } \\
-\ln (r/a) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
-\ln (r^{\prime }/a) & \tex...
...r<r^{\prime } \\
-\ln (r/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$

R30 Infinite body surrounding a circular hole, a $ \leq$ r < $ \infty$, with - k$ \partial$G/$ \partial$r + h1G = 0 (convection) at r = a. Note: B1 = h1a/k.

2$\displaystyle \pi$GR30(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
\ln (r/a)+1/B_{1} & \text{...
...
\ln (r^{\prime }/a)+1/B_{1} & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
\ln (r/a)+1/B_{1} & \text{for }r<r^{\prime } \\
\ln (r^{\prime }/a)+1/B_{1} & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
\ln (r/a)+1/B_{1} & \text{f...
...
\ln (r^{\prime }/a)+1/B_{1} & \text{for }r>r^{\prime }
\end{array}
}\right.$



Kevin D. Cole
2002-12-31