next up previous
Next: Infinite body with a Up: Radial-Cylindrical Coordinates. Steady 1-D. Previous: Radial-Cylindrical Coordinates. Steady 1-D.

Infinite body, cylindrical coordinate, steady 1-D.

R00 Infinite body, 0 $ \leq$ r < $ \infty$. Note that this geometry requires a pseudo GF, denoted H. The temperature solution found from a pseudo GF requires that the total volumetric heating sums to zero and the spatial average temperature in the body must be supplied as a known condition.

2$\displaystyle \pi$HR00(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
-\ln (r^{\prime }) & \text...
... }r<r^{\prime } \\
-\ln (r) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
-\ln (r^{\prime }) & \text{for }r<r^{\prime } \\
-\ln (r) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
-\ln (r^{\prime }) & \text{for }r<r^{\prime } \\
-\ln (r) & \text{for }r>r^{\prime }
\end{array}
}\right.$



Kevin D. Cole
2002-12-31