next up previous
Next: Representations of . Up: Dirac delta function Previous: Dirac delta function

Properties of the Dirac delta function

  1. Sifting property. Given function $\ f\,(x)$ continuous at $%
x=x^{\prime }$,

    \begin{displaymath}
\int_{a}^{b}f\,(x^{\prime })\;\delta (x-x^{\prime })\,dx^{\p...
...f }(a,b)\mbox{ does not contain }x\mbox{ }
\end{array}\right.
\end{displaymath}

    When integrated, the product of any (well-behaved) function and the Dirac delta yields the function evaluated where the Dirac delta is singular. The sifting property also applies if the arguments are exchanged: $\
f\,(x^{\prime })\;\delta (x-x^{\prime })dx^{\prime }=f\,(x)\;\delta
(x^{\prime }-x)dx$.

  2. Integral.

    \begin{displaymath}
\int_{-\infty }^{t}\delta (\tau )\,d\tau =H(t);\frac{dH(t-\tau )}{dt}=\delta
(t-\tau )
\end{displaymath}

    where $H(t)$ is the Heaviside unit step function defined as

    \begin{displaymath}
H(t)=\left\{
\begin{array}{cc}
0 & \mbox{if \ }t<0 \\
1 & \mbox{if \ }t>0
\end{array}\right.
\end{displaymath}

  3. Units. Since the definition of the Dirac delta requires that the product $\delta (x)dx$ is dimensionless, the units of the Dirac delta are the inverse of those of the argument $x$. That is, $\delta (x)$ has units $%
meters^{-1}$, and $\delta (t)$ has units $sec^{-1}$.

  4. Definition for radial, 2-D, and 3-D geometries. For two- and three- dimensional problems with vector coordinate $\overrightarrow{\mathbf{r}}$, the Dirac delta function is defined:

    \begin{displaymath}
\delta (\overrightarrow{\mathbf{r}})=0\mbox{ if }\overrighta...
...{-\infty }^{\infty }\delta (\overrightarrow{\mathbf{r}})\,dv=1
\end{displaymath}

    where $dv$ is differential volume. The units of $\delta (\overrightarrow{%
\mathbf{r}})$ are given by [$dv$]$^{-1}$, and three important cases are the listed below.

    1. 1-D radial cylindrical coordinates: $dv=2\pi rdr$, and units of $%
\delta (\overrightarrow{\mathbf{r}})$ are [meters]$^{-2}$.

    2. 1-D radial spherical coordinates: $dv=4\pi r^{2}dr,$and units of $%
\delta (\overrightarrow{\mathbf{r}})$ are [meters]$^{-3}$.

    3. 2-D Cartesian coordinates: dv = dx dy, and units of $\delta (%
\overrightarrow{\mathbf{r}})$ are [meters]$^{-2}$.


next up previous
Next: Representations of . Up: Dirac delta function Previous: Dirac delta function
2004-01-21