next up previous
Next: Semi-infinite body heated at Up: EXAMPLES, TEMPERATURE FROM GF Previous: EXAMPLES, TEMPERATURE FROM GF

1D infinite body with initial condition.

Consider the temperature caused by a spatially-varying initial condition in an infinite 1D body. The temperature satisfies the following equations:
$\displaystyle \frac{\partial^2 T}{\partial x^2}$ $\textstyle =$ $\displaystyle \frac{1}{\alpha} \frac{\partial T}{\partial t}; \; \; -\infty < x < \infty$ (1)
$\displaystyle T(x,t=0)$ $\textstyle =$ $\displaystyle \left\{
\begin{array}{cc}
T_1; & c < x < d \\
0; & \mbox{otherwise}
\end{array} \right.$  

This case has number X00T5. The solution for the temperature is given by the initial condition term of the GF solution equation:
\begin{displaymath}
T(x,t) = \int_{-\infty}^{\infty} F(x^{\prime} )
G_{X00}(x,t \mid x^{\prime},\tau=0) dx^{\prime}
\end{displaymath} (2)

Because the initial condition is zero over most of the domain the integral may be carried out over the non-zero portion:
\begin{displaymath}
T(x,t) = T_1 \int_c^d G_{X00}(x,t \mid x^{\prime},\tau=0) dx^{\prime}
\end{displaymath} (3)

Using the X00 Green's function evaluated at $\tau =0$,
\begin{displaymath}
T(x,t) = T_1 \int_c^d [4 \pi \alpha t]^{-1/2}\exp \left[
-\frac{(x-x^{\prime })^{2}}{4 \alpha t}\right] dx^{\prime}
\end{displaymath} (4)

Using the substitution $u = (x-x^{\prime })/(4\alpha t)^{1/2}$ this integral can be written as
$\displaystyle T(x,t)$ $\textstyle =$ $\displaystyle \frac{T_1}{\pi^{1/2} } \int_{(x-d)/[(4 \alpha t)^{1/2}]}
^{(x-c)/[(4 \alpha t)^{1/2}]}
e^{-u^2} du$ (5)
  $\textstyle =$ $\displaystyle \frac{T_1}{2} \left\{ erf \left[ \frac{(x-c)}{(4 \alpha t)^{1/2}}
\right] - erf \left[ \frac{(x-d)}{(4 \alpha t)^{1/2}} \right] \right\}$ (6)

where the error function is defined
\begin{displaymath}
erf(z) = \frac{2}{\pi^{1/2}} \int_0^z e^{-u^2} du
\end{displaymath} (7)


next up previous
Next: Semi-infinite body heated at Up: EXAMPLES, TEMPERATURE FROM GF Previous: EXAMPLES, TEMPERATURE FROM GF
2004-01-31