next up previous
Next: Radial Cylindrical Coordinates, Steady 2D and 3D. Cases R0JZKL$\Phi00$ and R0JZKL Up: Radial-Cylindrical Coordinates. Steady 1-D. Previous: Solid cylinder, steady 1-D.

Hollow Cylinder, steady 1-D.

R11 Hollow cylinder, a $ \leq$ r $ \leq$ b, with G = 0 (Dirichlet) at r=a and at r=b.

2$\displaystyle \pi$GR11(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
\ln (b/r^{\prime })\ln (r/...
...\ln (r^{\prime }/a)/\ln (b/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
\ln (b/r^{\prime })\ln (r/a)/\ln (b/a) & \text...
...
\ln (b/r)\ln (r^{\prime }/a)/\ln (b/a) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
\ln (b/r^{\prime })\ln (r/a...
...\ln (r^{\prime }/a)/\ln (b/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$

R12 Hollow cylinder, a $ \leq$ r $ \leq$ b, with G = 0 (Dirichlet) at r = a and $ \partial$G/$ \partial$r = 0 (Neumann) at r = b.

2$\displaystyle \pi$GR12(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
\ln (r/a) & \text{for }r<r...
...me } \\
\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
\ln (r/a) & \text{for }r<r^{\prime } \\
\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
\ln (r/a) & \text{for }r<r^...
...me } \\
\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$

R13 Hollow cylinder, 0 $ \leq$ r $ \leq$ b, with G = 0 (Dirichlet) at r = 0 and k$ \partial$G/$ \partial$r + h2G = 0 (convection) at r = b. Note B2 = h2b/k.

2$\displaystyle \pi$GR13(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
\ln (r/a)\left[ 1+B_{2}\ln...
...n (b/r)]/[1+B_{2}\ln (b/a)] & \text{for }
r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
\ln (r/a)\left[ 1+B_{2}\ln (b/r^{\prime })\rig...
...[1+B_{2}\ln (b/r)]/[1+B_{2}\ln (b/a)] & \text{for }
r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
\ln (r/a)\left[ 1+B_{2}\ln ...
...n (b/r)]/[1+B_{2}\ln (b/a)] & \text{for }
r>r^{\prime }
\end{array}
}\right.$

R21 Hollow cylinder, a $ \leq$ r $ \leq$ b, with $ \partial$G/$ \partial$r = 0 (Neumann) at r = a and G = 0 (Dirichlet) at r = b.

2$\displaystyle \pi$GR21(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
ln(b/r^{\prime }) & \text{for }r<r^{\prime } \\
ln(b/r) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
ln(b/r^{\prime }) & \text{for }r<r^{\prime } \\
ln(b/r) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
ln(b/r^{\prime }) & \text{for }r<r^{\prime } \\
ln(b/r) & \text{for }r>r^{\prime }
\end{array}
}\right.$

R22 Hollow cylinder, a $ \leq$ r $ \leq$ b, with $ \partial$G/$ \partial$r = 0 (Neumann) at both boundaries. Note that this geometry requires a pseudo GF, denoted H. The temperature solution found from a pseudo GF requires that the total volumetric heat flow is equal to the boundary heat flow, and the spatial average temperature in the body must be supplied as a known condition.

2$\displaystyle \pi$HR22(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{c}
\lbrack (r^{2}+(r^{\prime }...
...rime }}{a})]/(b^{2}-a^{2}) \\
\text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{c}
\lbrack (r^{2}+(r^{\prime })^{2})/2-b^{2}\ln (\...
...ac{%
r^{\prime }}{a})]/(b^{2}-a^{2}) \\
\text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{c}
\lbrack (r^{2}+(r^{\prime })...
...rime }}{a})]/(b^{2}-a^{2}) \\
\text{for }r>r^{\prime }
\end{array}
}\right.$

R23 Hollow cylinder, a $ \leq$ r $ \leq$ b, with $ \partial$G/$ \partial$r = 0 (Neumann) at r = a and k$ \partial$G/$ \partial$r + h2G = 0 (convection) at r = b. Note B2 = h2b/k.

2$\displaystyle \pi$GR23(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
1/B_{2}+\ln (b/r^{\prime }...
...rime } \\
1/B_{2}+\ln (b/r) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
1/B_{2}+\ln (b/r^{\prime }) & \text{for }r<r^{\prime } \\
1/B_{2}+\ln (b/r) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
1/B_{2}+\ln (b/r^{\prime })...
...rime } \\
1/B_{2}+\ln (b/r) & \text{for }r>r^{\prime }
\end{array}
}\right.$

R31 Hollow cylinder, a $ \leq$ r $ \leq$ b, with - k$ \partial$G/$ \partial$r + h1G = 0 (convection) at r = a and G = 0 (Dirichlet) at r = b. Note B1 = h1a/k

2$\displaystyle \pi$GR31(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
\ln (b/r^{\prime })[1+B_{1...
...me }/a)]/[1+B_{1}\ln (b/a)] & \text{for }%
r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
\ln (b/r^{\prime })[1+B_{1}\ln (r/a)]/[1+B_{1}...
...n (r^{\prime }/a)]/[1+B_{1}\ln (b/a)] & \text{for }%
r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
\ln (b/r^{\prime })[1+B_{1}...
...me }/a)]/[1+B_{1}\ln (b/a)] & \text{for }%
r>r^{\prime }
\end{array}
}\right.$

R32 Hollow cylinder, a $ \leq$ r $ \leq$ b, with - k$ \partial$G/$ \partial$r + h2G = 0 (convection) at r = a and $ \partial$G/$ \partial$r = 0 (Neumann) at r = b. Note B1 = h1a/k.

2$\displaystyle \pi$GR32(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
1/B_{1}+\ln (r/a) & \text{...
...
1/B_{1}+\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
1/B_{1}+\ln (r/a) & \text{for }r<r^{\prime } \\
1/B_{1}+\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
1/B_{1}+\ln (r/a) & \text{f...
...
1/B_{1}+\ln (r^{\prime }/a) & \text{for }r>r^{\prime }
\end{array}
}\right.$

R33 Hollow cylinder, a $ \leq$ r $ \leq$ b, with - k$ \partial$G/$ \partial$r + h1G = 0 (convection) at r = a and k$ \partial$G/$ \partial$r + h2G = 0 (convection) at r = b. Note B1 = h1a/k and B2 = h2b/k.

2$\displaystyle \pi$GR33(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{c}
\lbrack B_{1}B_{2}ln(b/r^{\...
..._{1}+B_{2}+B_{1}B_{2}ln(b/a)];\;\text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{c}
\lbrack B_{1}B_{2}ln(b/r^{\prime })ln(r/a)+B_{1...
... \lbrack B_{1}+B_{2}+B_{1}B_{2}ln(b/a)];\;\text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{c}
\lbrack B_{1}B_{2}ln(b/r^{\p...
..._{1}+B_{2}+B_{1}B_{2}ln(b/a)];\;\text{for }r>r^{\prime }
\end{array}
}\right.$


next up previous
Next: Radial Cylindrical Coordinates, Steady 2D and 3D. Cases R0JZKL$\Phi00$ and R0JZKL Up: Radial-Cylindrical Coordinates. Steady 1-D. Previous: Solid cylinder, steady 1-D.
Kevin D. Cole
2002-12-31