Next: Laplace Equation. Steady Heat
 Up: Radial-spherical coordinates. Transient 1-D.
 Previous: Solid Sphere, transient 1-D.
RS11 Hollow sphere, a < r < b, with G = 0 (Dirichlet) at r = a and G = 0 (Dirichlet) at r = b. 
a.  Best convergence for (t - 
) small: 
GRS11(r, t   r , 
 ) | 
= | 
![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif)   exp 
-  
 
![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{[2n(b-a)+r-r^{\prime }]^{2}}{4\alpha (t-\tau )}%
\right] }\right.$](img383.gif)  | 
  | 
|   | 
  | 
 
+exp 
-  
 
![$\displaystyle \left.\vphantom{ +\exp \left[ -\frac{[2n(b-a)+r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau
)}\right] }\right\}$](img388.gif)  | 
  | 
 
b.  Best convergence for (t - 
) large: 
GRS11(r, t   r , 
 ) | 
= | 
  | 
  | 
|   | 
  | 
x  exp 
-  
 sin(m  )sin(m  ) | 
  | 
 
RS12 Hollow sphere, a < r < b, with G = 0 (Dirichlet) at r = a and 
G/
r = 0 (Neumann) at r = b. 
a.  Best convergence for 
(t - 
)/(b - a)2 < 0.022: 
GRS12(r, t   r , 
 ) | 
= | 
![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif)  exp 
-  
 
![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{(r-r^{\prime })^{2}}{4\alpha (t-\tau )}\right]
}\right.$](img396.gif)  | 
  | 
|   | 
  | 
 
-exp 
-  
 
+ exp 
-  
 
![$\displaystyle \left.\vphantom{ -\exp \left[ -\frac{(r+r^{\prime }-2a)^{2}}{4\al...
...+\exp \left[ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}\right]
}\right\}$](img402.gif)  | 
  | 
|   | 
  | 
-  exp B2 
+ B22 
![$\displaystyle \left.\vphantom{ B_{2}\frac{(2b-r-r^{\prime
})}{b^{{}}}+B_{2}^{2}\frac{\alpha (t-\tau )}{b^{2}}}\right]$](img405.gif)  | 
  | 
|   | 
  | 
x erfc![$\displaystyle \left[\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right.$](img371.gif)  
+  
![$\displaystyle \left.\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right]$](img374.gif)  | 
  | 
 
b.  Best convergence for (t - 
) large: 
GRS12(r, t   r , 
 ) | 
= | 
  exp 
-  
![$\displaystyle \left.\vphantom{ -\frac{\beta
_{m}^{2}\alpha (t-\tau )}{(b-a)^{2}}}\right]$](img408.gif)  | 
  | 
|   | 
  | 
 sin(  )sin(  ) | 
  | 
 
where the eigenvalues are given by positive roots of 
 cot 
= - H2 | 
    | 
 
and where 
H2 = B2R2;  B2 = - 1;  R2 = (b - a)/b.
RS13 Hollow sphere, a < r < b, with G = 0 (Dirichlet) at r = a and 
k
G/
r + hG = 0 (convection) at r = b. 
a.  Best convergence for 
(t - 
)/(b - a)2 < 0.022
(note 
B2 = h2b/k - 1): 
GRS13(r, t   r , 
 ) | 
= | 
![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif)  exp 
-  
 
![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{(r-r^{\prime })^{2}}{4\alpha (t-\tau )}\right]
}\right.$](img396.gif)  | 
  | 
|   | 
  | 
 
-exp 
-  
 
+ exp 
-  
 
![$\displaystyle \left.\vphantom{ -\exp \left[ -\frac{(r+r^{\prime }-2a)^{2}}{4\al...
...+\exp \left[ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}\right]
}\right\}$](img402.gif)  | 
  | 
|   | 
  | 
-  exp B2 
+ B22 
![$\displaystyle \left.\vphantom{ B_{2}\frac{(2b-r-r^{\prime
})}{b^{{}}}+B_{2}^{2}\frac{\alpha (t-\tau )}{b^{2}}}\right]$](img405.gif)  | 
  | 
|   | 
  | 
x erfc![$\displaystyle \left[\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right.$](img371.gif)  
+  
![$\displaystyle \left.\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right]$](img374.gif)  | 
  | 
 
b.  Best convergence for (t - 
) large: 
GRS13(r, t   r , 
 ) | 
= | 
  exp 
-  
![$\displaystyle \left.\vphantom{ -\frac{\beta
_{m}^{2}\alpha (t-\tau )}{(b-a)^{2}}}\right]$](img408.gif)  | 
  | 
|   | 
  | 
 sin(  )sin(  ) | 
  | 
 
where the eigenvalues are given by positive roots of 
 cot 
= - H2 | 
    | 
 
and where 
H2 = B2R2;  B2 = h2b/k - 1;  R2 = (b - a)/b.
 
 
   
 Next: Laplace Equation. Steady Heat
 Up: Radial-spherical coordinates. Transient 1-D.
 Previous: Solid Sphere, transient 1-D.
Kevin D. Cole
2002-12-31