 
 
 
 
 
   
 Next: Hollow Sphere, transient 1-D.
 Up: Radial-spherical coordinates. Transient 1-D.
 Previous: Infinite body with a
RS01 Solid sphere, 0 < r < b, with G = 0 (Dirichlet) at r = b.
a.  Best convergence for 
 (t -
(t -  )/b2 small:
)/b2 small: 
| GRS01(r, t  r  ,    ) | = | ![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif) |  | 
|  |  | x  ![$\displaystyle \left\{\vphantom{ \exp \left[ -\frac{
(2nb+r-r^{\prime })^{2}}{4\...
...\exp \left[ -\frac{
(2nb+r+r^{\prime })^{2}}{4\alpha (t-\tau )}\right] }\right.$](img339.gif) exp  -   ![$\displaystyle \left.\vphantom{ -\frac{
(2nb+r-r^{\prime })^{2}}{4\alpha (t-\tau )}}\right]$](img342.gif) - exp  -   ![$\displaystyle \left.\vphantom{ -\frac{
(2nb+r+r^{\prime })^{2}}{4\alpha (t-\tau )}}\right]$](img345.gif)  ![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{
(2nb+r-r^{\prime })^{2}}{4\a...
...exp \left[ -\frac{
(2nb+r+r^{\prime })^{2}}{4\alpha (t-\tau )}\right] }\right\}$](img346.gif) |  | 
 
b.  Best convergence for 
 (t -
(t -  )/b2 large:
)/b2 large: 
| GRS01(r, t  r  ,    ) =   exp  - m2   (t -  )/b2 ![$\displaystyle \left.\vphantom{ -m^{2}\pi ^{2}\alpha (t-\tau
)/b^{2}}\right]$](img350.gif) sin(m   )sin(m   ) |  | 
 
RS02 Solid sphere, 0 < r < b, with 
 G/
G/ r = 0
(Newmann) at r = b.
a.  Approximate relation for
r = 0
(Newmann) at r = b.
a.  Approximate relation for 
 (t -
(t -  )/b2
)/b2  0.022 (here B2 = - 1):
0.022 (here B2 = - 1): 
| GRS02(r, t  r  ,    ) | = | ![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif) ![$\displaystyle \left\{\vphantom{ \exp \left[ -\frac{%
(r-r^{\prime })^{2}}{4\alp...
...\exp \left[ -\frac{%
(r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau )}\right] }\right.$](img353.gif) exp  -   ![$\displaystyle \left.\vphantom{ -\frac{%
(r-r^{\prime })^{2}}{4\alpha (t-\tau )}}\right]$](img356.gif) - exp  -   ![$\displaystyle \left.\vphantom{ -\frac{%
(r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau )}}\right]$](img359.gif)  ![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{%
(r-r^{\prime })^{2}}{4\alph...
...\exp \left[ -\frac{%
(r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau )}\right] }\right.$](img360.gif) |  | 
|  |  | ![$\displaystyle \left.\vphantom{ +\exp \left[ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
\right] }\right.$](img361.gif) +exp  -   ![$\displaystyle \left.\vphantom{ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
}\right]$](img364.gif)  ![$\displaystyle \left.\vphantom{ +\exp \left[ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
\right] }\right\}$](img365.gif) |  | 
|  |  | -  exp  B2  + B22   ![$\displaystyle \left.\vphantom{ B_{2}\frac{2b-r-r^{\prime }%
}{b^{{}}}+B_{2}^{2}\frac{\alpha (t-\tau )}{b^{2}}}\right]$](img370.gif) |  | 
|  |  | x erfc ![$\displaystyle \left[\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right.$](img371.gif) ![$\displaystyle {\frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}}$](img372.gif) + ![$\displaystyle {\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}$](img373.gif)  ![$\displaystyle \left.\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right]$](img374.gif) |  | 
 
b.  Best convergence for 
 (t -
(t -  )/b2 large:
)/b2 large: 
| GRS02(r, t  r  ,    ) | = |  +   exp  -   (t -  )/b2 ![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right]$](img282.gif) |  | 
|  |  | x  sin(   )sin(   ) |  | 
 
The eigenvalues are given by the positive roots of 
|  cot  = 1 |  | 
 
RS03 Solid sphere, 0 < r < b, with 
k G/
G/ r + hG = 0 (convection) at r = b.
r + hG = 0 (convection) at r = b. 
a.  Approximate relation for 
 (t -
(t -  )/b2
)/b2  0.022 (here 
B2 = hb/k - 1):
0.022 (here 
B2 = hb/k - 1): 
| GRS03(r, t  r  ,    ) | = | ![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif) ![$\displaystyle \left\{\vphantom{ \exp \left[ -\frac{%
(r-r^{\prime })^{2}}{4\alp...
...\exp \left[ -\frac{%
(r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau )}\right] }\right.$](img353.gif) exp  -   ![$\displaystyle \left.\vphantom{ -\frac{%
(r-r^{\prime })^{2}}{4\alpha (t-\tau )}}\right]$](img356.gif) - exp  -   ![$\displaystyle \left.\vphantom{ -\frac{%
(r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau )}}\right]$](img359.gif)  ![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{%
(r-r^{\prime })^{2}}{4\alph...
...\exp \left[ -\frac{%
(r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau )}\right] }\right.$](img360.gif) |  | 
|  |  | ![$\displaystyle \left.\vphantom{ +\exp \left[ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
\right] }\right.$](img361.gif) +exp  -   ![$\displaystyle \left.\vphantom{ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
}\right]$](img364.gif)  ![$\displaystyle \left.\vphantom{ +\exp \left[ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
\right] }\right\}$](img365.gif) |  | 
|  |  | -  exp  B2  + B22   ![$\displaystyle \left.\vphantom{ B_{2}\frac{2b-r-r^{\prime }%
}{b^{{}}}+B_{2}^{2}\frac{\alpha (t-\tau )}{b^{2}}}\right]$](img370.gif) |  | 
|  |  | x erfc ![$\displaystyle \left[\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right.$](img371.gif) ![$\displaystyle {\frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}}$](img372.gif) + ![$\displaystyle {\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}$](img373.gif)  ![$\displaystyle \left.\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right]$](img374.gif) |  | 
 
b.  Best convergence for 
 (t -
(t -  )/b2 large:
)/b2 large: 
| GRS03(r, t  r  ,    ) | = |   exp  -   (t -  )/b2 ![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right]$](img282.gif) |  | 
|  |  | x  sin(   )sin(   ) |  | 
 
where 
B2 = hb/k - 1 and where the eigenvalues are given by the positive
roots of 
|  cot  = - B2 |  | 
 
 
 
 
 
 
   
 Next: Hollow Sphere, transient 1-D.
 Up: Radial-spherical coordinates. Transient 1-D.
 Previous: Infinite body with a
Kevin D. Cole
2002-12-31