Next: Hollow Sphere, transient 1-D.
Up: Radial-spherical coordinates. Transient 1-D.
Previous: Infinite body with a
RS01 Solid sphere, 0 < r < b, with G = 0 (Dirichlet) at r = b.
a. Best convergence for
(t -
)/b2 small:
GRS01(r, t r ,
) |
= |
![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif) |
|
|
|
x  exp
-
- exp
-
![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{
(2nb+r-r^{\prime })^{2}}{4\a...
...exp \left[ -\frac{
(2nb+r+r^{\prime })^{2}}{4\alpha (t-\tau )}\right] }\right\}$](img346.gif) |
|
b. Best convergence for
(t -
)/b2 large:
GRS01(r, t r ,
) =  exp
- m2 (t - )/b2 sin(m )sin(m ) |
|
RS02 Solid sphere, 0 < r < b, with
G/
r = 0
(Newmann) at r = b.
a. Approximate relation for
(t -
)/b2
0.022 (here B2 = - 1):
GRS02(r, t r ,
) |
= |
![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif) exp
-
- exp
-
![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{%
(r-r^{\prime })^{2}}{4\alph...
...\exp \left[ -\frac{%
(r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau )}\right] }\right.$](img360.gif) |
|
|
|
+exp
-
![$\displaystyle \left.\vphantom{ +\exp \left[ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
\right] }\right\}$](img365.gif) |
|
|
|
- exp B2
+ B22
![$\displaystyle \left.\vphantom{ B_{2}\frac{2b-r-r^{\prime }%
}{b^{{}}}+B_{2}^{2}\frac{\alpha (t-\tau )}{b^{2}}}\right]$](img370.gif) |
|
|
|
x erfc![$\displaystyle \left[\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right.$](img371.gif)
+
![$\displaystyle \left.\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right]$](img374.gif) |
|
b. Best convergence for
(t -
)/b2 large:
GRS02(r, t r ,
) |
= |
+  exp
-  (t - )/b2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right]$](img282.gif) |
|
|
|
x sin( )sin( ) |
|
The eigenvalues are given by the positive roots of
cot
= 1 |
|
RS03 Solid sphere, 0 < r < b, with
k
G/
r + hG = 0 (convection) at r = b.
a. Approximate relation for
(t -
)/b2
0.022 (here
B2 = hb/k - 1):
GRS03(r, t r ,
) |
= |
![$\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$](img314.gif) exp
-
- exp
-
![$\displaystyle \left.\vphantom{ \exp \left[ -\frac{%
(r-r^{\prime })^{2}}{4\alph...
...\exp \left[ -\frac{%
(r+r^{\prime }-2a)^{2}}{4\alpha (t-\tau )}\right] }\right.$](img360.gif) |
|
|
|
+exp
-
![$\displaystyle \left.\vphantom{ +\exp \left[ -\frac{(2b-r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
\right] }\right\}$](img365.gif) |
|
|
|
- exp B2
+ B22
![$\displaystyle \left.\vphantom{ B_{2}\frac{2b-r-r^{\prime }%
}{b^{{}}}+B_{2}^{2}\frac{\alpha (t-\tau )}{b^{2}}}\right]$](img370.gif) |
|
|
|
x erfc![$\displaystyle \left[\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right.$](img371.gif)
+
![$\displaystyle \left.\vphantom{ \frac{2b-r-r^{\prime }}{[4\alpha (t-\tau )]^{1/2}}%
+\frac{B_{2}\left[ \alpha (t-\tau )\right] ^{1/2}}{b^{{}}}}\right]$](img374.gif) |
|
b. Best convergence for
(t -
)/b2 large:
GRS03(r, t r ,
) |
= |
 exp
-  (t - )/b2![$\displaystyle \left.\vphantom{ -\beta _{m}^{2}\alpha (t-\tau )/b^{2}}\right]$](img282.gif) |
|
|
|
x sin( )sin( ) |
|
where
B2 = hb/k - 1 and where the eigenvalues are given by the positive
roots of
cot
= - B2 |
|
Next: Hollow Sphere, transient 1-D.
Up: Radial-spherical coordinates. Transient 1-D.
Previous: Infinite body with a
Kevin D. Cole
2002-12-31