J.V. |
BECK, DEPT |
. OF MECH. EN |
G., MI |
CH. |
STATE UNIV. 1990 |
|
|
|
|
LIST |
OF NUMBERS |
IN CARSLAW AND JAEGER |
(1959 Edition) using the numbering |
|
|
system for heat
conduction found in our book |
|
|
"Heat Conduction Using Green's
Functions", Chapter 2. |
NO. |
TYPE |
BOOK Pg |
EQ# |
COMMENTS |
|
1 |
X00T- |
C&J |
53 |
1 |
For conditions on f(x), see p.54, C&J |
|
2 |
X00T- |
C&J |
54 |
2 |
Same as no. 1 which is preferred. |
|
3 |
X00T5 |
C&J |
54 |
3 |
F(x)=V, -a<x<a; F(x)=0, abs(x)>a |
|
4 |
X00T5 |
C&J |
54 |
4 |
F(x)=0, -a<x<a; F(x)=V, abs(x)>a |
|
5 |
X00T2 |
C&J |
54 |
5 |
F(x)=0, abs(x)>a; F(x)=V(a-x)/a, see C&J |
|
6 |
X20B0T- |
C&J |
56 |
6 |
|
7 |
X10BOT- |
C&J |
59 |
1 |
|
8 |
X10B0T- |
C&J |
59 |
2 |
Same as C&J, p.59,(1), which is preffered |
|
9 |
X10B0T1 |
C&J |
59 |
3 |
|
10 |
X10B1T0 |
C&J |
60 |
10 |
|
11 |
X00T5 |
C&J |
61 |
12 |
F(x)=0, x<0 ;T=V, x>0 |
|
12 |
X10B0T2 |
C&J |
61 |
13 |
F(x)=V+kx |
|
13 |
X10B0T5 |
C&J |
62 |
14 |
F(x)=V, 0<x<d;T=0 x>0 |
|
14 |
X10B0T5 |
C&J |
62 |
15 |
F(x)=V, a<x<b;T=0, 0<x<a, x>b |
|
15 |
X10B-T0 |
C&J |
63 |
1 |
|
16 |
X10B5T0 |
C&J |
63 |
2,3 |
f(t)=V0, 0<t<ta; f(t)=V1, t>ta |
|
17 |
X10B2T0 |
C&J |
63 |
4,5 |
f(t)=kt, two expressions |
|
18 |
X10B3T0 |
C&J |
63 |
6,7 |
f(t)=sqrt(kt) |
|
19 |
X10B3T0 |
C&J |
63 |
8 |
f(t)=sqrt(t**n) |
|
20 |
X10B4T0 |
C&J |
64 |
9 |
f(t)=exp(nt) |
|
21 |
X10B6T0 |
C&J |
64 |
1,2 |
f(t)=a cos(wt-e) |
|
22 |
X10B6T |
C&J |
65 |
8 |
f(t)=a cos(wt-e), steady st. periodic |
|
23 |
X20B6T |
C&J |
67 |
14 |
f(t)=a cos(wt-e) |
|
24 |
X10B6T |
C&J |
68 |
18 |
f(t)=a0+a1 cos(wte1), st. st. periodic |
|
25 |
X10B5T |
C&J |
68 |
20 |
steady state periodic |
|
26 |
X30B0T1 |
C&J |
71 |
1 |
|
27 |
X30B1T0 |
C&J |
72 |
5 |
|
28 |
X30B-T0 |
C&J |
74 |
1 |
|
29 |
X30B5T0 |
C&J |
74 |
2,3 |
f(t)=a, 0<t<V;f(t)=b,
t>ta |
|
30 |
X30B6T0 |
C&J |
74 |
4 |
f(t)=sin(wt+e) |
|
31 |
X20B1T0 |
C&J |
75 |
6,7 |
Two forms of solution |
|
32 |
X20B-T0 |
C&J |
76 |
9 |
|
33 |
X20B5T0 |
C&J |
76 |
10 |
f(t)=q0, 0<t<ta;f(t)=0, t>ta |
|
34 |
X20B3T0 |
C&J |
76 |
12 |
f(t)=a sqrt(kt), 0<t<ta; f(t)=0, t>ta |
|
35 |
X20B6T0 |
C&J |
76 |
13 |
f(t)=sin(wt+e) |
|
36 |
X20B3T0 |
C&J |
77 |
16 |
f(t)=q0 sqrt(t**n), n=-1,0,1.. |
|
37 |
X10B0T(1,2)G1 |
C&J |
79 |
2 |
F(x)=a+bx |
|
38 |
X10B0T(1,2)Gx4 |
C&J |
79 |
3 |
F(x)=a+bx, g(x)=a exp(-nx) |
|
39 |
X10B0T(1,2)Gx5 |
C&J |
79 |
4,5 |
F(x)=a+bx; g(x)=a, 0<x<L<B |
|
40 |
X20B0T0Gx5 |
C&J |
80 |
9,10 |
g(x)=a, 0<x<L; g(x)=0, x>L |
|
41 |
X10B0T0Gt4 |
C&J |
80 |
12 |
g(x)=a exp(-kt) |
|
42 |
X20B0T2Gx4 |
C&J |
80 |
13 |
F(x)=a+bx, g(x)=a exp(-bx) |
|
43 |
X0T1CX0T0 |
C&J |
88 |
5,6 |
Composite, F(x)=V, x>0; F(x)=0,X>0 |
|
44 |
X0T0C2X0T0 |
C&J |
88 |
9,10 |
Composite, heat flux at x=0 |
|
45 |
X0T1C3X0T0 |
C&J |
89 |
12 |
Composite, resistance at x=0 |
|
46 |
X11B00T- |
C&J |
94 |
4,5 |
0<x<L |
|
47 |
X11B00T1 |
C&J |
96 |
6 |
0<x<L |
|
48 |
X11B00T2 |
C&J |
96 |
7 |
F(x)=kx, 0<x<L |
|
49 |
X11B00T1 |
C&J |
97 |
8,9 |
#NAME? |
|
49 |
X21B00T1 |
C&J |
97 |
8,9 |
0<x<L |
|
50 |
X11B00T2 |
C&J |
97 |
14,15 |
F(x)=V(L-abs(x))/L, -L<x<L |
|
51 |
X21B00T2 |
C&J |
97 |
14,15 |
F(x)=V(L-x)/L, 0<x<L |
|
52 |
X11B00T3 |
C&J |
98 |
16,17 |
F(x)=V(L**2-X**2)/L**2, -L<x<L |
|
52 |
X21B00T3 |
C&J |
98 |
16,17 |
0<x<L |
|
53 |
X11B00T6 |
C&J |
99 |
18 |
F(x)=V cos(x/2L), -L<x<L |
|
54 |
X21B00T6 |
C&J |
99 |
18 |
F(x)=V cos(x/2L), 0<x<L |
|
55 |
X11B11T- |
C&J |
100 |
1 |
T(0,t)=T1, T(L,t)=T2 |
|
56 |
X11B11T0 |
C&J |
100 |
2 |
-L<x<L |
|
57 |
X21B01T0 |
C&J |
100 |
2 |
0<x<L |
|
58 |
X11B11T0 |
C&J |
100 |
4 |
-1<x<1 Dimensionless |
|
59 |
X21B01T0 |
C&J |
100 |
4 |
0<x<1 Dimensionless |
|
60 |
X21B01T- |
C&J |
101 |
5 |
|
61 |
X22B00T- |
C&J |
101 |
6 |
|
62 |
X11B--T- |
C&J |
104 |
2 |
|
63 |
X21B0-T- |
C&J |
104 |
3 |
|
64 |
X11B22T0 |
C&J |
104 |
4 |
T(-L,t)=T(L,t)=kt, -L<x<L |
|
65 |
X21B02T0 |
C&J |
104 |
4 |
T(L,t)=kt, 0<x<L |
|
66 |
X11B66T0 |
C&J |
104 |
5 |
T(-L,t)=T(L,t)=V(1-exp(-bt)) |
|
67 |
X21B06T0 |
C&J |
104 |
5 |
T(L,T)=V(1exp(bt)) 0<x<L |
|
68 |
X11B44T0 |
C&J |
105 |
6 |
T(-L,t)=T(L,t)=V exp(bt) -L<x<L |
|
69 |
X21B04T0 |
C&J |
105 |
6 |
T(L,t)=V exp(bt) 0<x<L |
|
70 |
X11B66T0 |
C&J |
105 |
1 |
T(\L\,T)=sin(wt+e) |
|
71 |
X21B06T0 |
C&J |
105 |
1 |
T(L,t)=sin(wt+e) |
|
72 |
X11B06T0 |
C&J |
105 |
5,6 |
T(L,t)=sin(wt+e) 0<x<L |
|
73 |
X11B05T |
C&J |
108 |
15,17 |
Steady periodic |
|
74 |
X21B05T |
C&J |
109 |
20,21 |
Steady periodic |
|
75 |
X22B01T0 |
C&J |
112 |
3,4 |
Two forms, 0<x<L |
|
76 |
X12B01T0 |
C&J |
113 |
5,6 |
Two forms, 0<x<L |
|
77 |
X22B03T0 |
C&J |
113 |
7 |
T(L,t)=q0 sqrt(t**m), m=-1,0,1,.. |
|
78 |
X12B03T0 |
C&J |
114 |
8 |
T(L,t)=q0 sqrt(t**m), m=-1,0,1... |
|
79 |
X33B00T- |
C&J |
118 |
12 |
0<x<L h1 = h2 |
|
80 |
X33B00T- |
C&J |
119 |
1 |
-L<x<L h1 = h2 |
|
81 |
X23B00T- |
C&J |
119 |
1 |
0<x<L |
|
82 |
X33B00T- |
C&J |
120 |
8 |
F(x) is even function L<x<L |
|
83 |
X23B00T- |
C&J |
120 |
8 |
|
84 |
X33B00T- |
C&J |
120 |
11 |
F(x) is odd function of x |
|
85 |
X13B00T- |
C&J |
120 |
11 |
|
86 |
X33B00T1 |
C&J |
122 |
12 |
h1=h2, -L<x<L |
|
87 |
X23B00T1 |
C&J |
122 |
12 |
|
88 |
X33B00T(1,2) |
C&J |
124 |
13 |
F(x)=a-bx**2 |
|
89 |
X23B00T2 |
C&J |
124 |
13 |
F(x)=a-bx**2 |
|
90 |
X23B10T0 |
C&J |
125 |
14 |
0<x<L |
|
91 |
X13B01T0 |
C&J |
125 |
15 |
|
92 |
X13B10T0 |
C&J |
126 |
16 |
|
93 |
X13B01T2 |
C&J |
126 |
17 |
F(x)=Vx/L, 0<x<L f2(t)=V |
|
94 |
X33B01T0 |
C&J |
126 |
19 |
-L<x<L, h1 = h2 |
|
95 |
X33B00T- |
C&J |
126 |
21-24 |
general result, h1 not = h2 |
|
96 |
X33B--T0 |
C&J |
127 |
1 |
same function at x = -L,L |
|
97 |
X23B0-T0 |
C&J |
127 |
1 |
0<x<L |
|
98 |
X33B55T0 |
C&J |
127 |
3,4 |
f1=f2=V0, 0<t<ta;f1=f2=V1,t>ta |
|
99 |
X23B05T0 |
C&J |
127 |
3,4 |
f2=V0, 0<t<ta;f2=V1, t>ta |
|
100 |
X33B66T0 |
C&J |
127 |
5 |
f1=f2=Vsin(wt+e), -L<x<L |
|
101 |
X23B06T0 |
C&J |
127 |
5 |
f2=Vsin(wt+e), 0<x<L |
|
102 |
X33B232T0 |
C&J |
127 |
9 |
f1=f2=Kt, -L<x<L |
|
103 |
X23B02T0 |
C&J |
127 |
9 |
f2=Kt, 0<x<L |
|
104 |
X24B01T00 |
C&J |
128 |
5 |
|
105 |
X24B00T01 |
C&J |
128 |
6 |
|
106 |
X14B01T00 |
C&J |
128 |
7 |
|
107 |
X14B00T01 |
C&J |
128 |
8 |
|
108 |
X14B10T00 |
C&J |
129 |
9 |
|
109 |
X24B10T00 |
C&J |
129 |
10 |
|
110 |
X25B00T10 |
C&J |
129 |
11 |
|
111 |
X25B0-T00 |
C&J |
129 |
13 |
|
112 |
X62B10T00 |
C&J |
129 |
14 |
Contact resistance between fluid |
|
|
|
|
and solid |
|
113 |
X11B00T0G1 |
C&J |
130 |
7 |
-L<x<L |
|
114 |
X21B00T0G1 |
C&J |
130 |
7 |
0<x<L |
|
115 |
X11B00T0G3 |
C&J |
131 |
8 |
-L<x<L, g=at**n/2,
n=-1,0,1,2,... |
|
116 |
X21B00T0G3 |
C&J |
131 |
8 |
0<x<L, g=at**n/2, n=-1,0,1,2,... |
|
117 |
X11B00T0Gt- |
C&J |
131 |
9 |
-L<x<L |
|
118 |
X21B00T0Gt- |
C&J |
131 |
9 |
0<x<L |
|
119 |
X11B00T0Gx- |
C&J |
132 |
10a |
-L<x<L |
|
120 |
X21B00T0Gx- |
C&J |
132 |
10a |
0<x<L |
|
121 |
X11B00Gx- |
C&J |
132 |
10b |
-L<x<L Steady state |
|
122 |
X21B00Gx- |
C&J |
132 |
10b |
0<x<L Steady state |
|
123 |
X33B00T0G1 |
C&J |
132 |
12 |
L<x<L |
|
124 |
X23B00T0G1 |
C&J |
132 |
12 |
0<x<L, h1 = h2 |
|
125 |
X13B00T0G1 |
C&J |
132 |
13 |
0<x<L |
|
126 |
X11B00T0Gt4 |
C&J |
132 |
14 |
-L<x<L, g(t)=a exp(-bt) |
|
127 |
X21B00T0Gt4 |
C&J |
132 |
14 |
0<x<L, g(t)=a exp(-bt) |
|
128 |
X10F0B1T0 |
C&J |
135 |
7 |
|
129 |
X11F0B11T0 |
C&J |
135 |
8 |
-L<x<L |
|
130 |
X21F0B01T0 |
C&J |
135 |
8 |
0<x<L |
|
131 |
X10F0B1 |
C&J |
135 |
1 |
Steady state |
|
132 |
X11F0B11 |
C&J |
139 |
1 |
Steady state |
|
133 |
X12F0B10 |
C&J |
142 |
6 |
|
134 |
X12F0B10 |
C&J |
142 |
14 |
Steady state, fin taper linear |
|
|
|
|
at a small angle A |
|
|
|
|
x=0, area=D, x=L, area=D-2AL |
|
135 |
R12F0B10 |
C&J |
143 |
20 |
Circular fin |
|
136 |
RF--0 |
C&J |
143 |
24 |
Circular fin, variable thickness, z=D/r |
|
137 |
R12F0B10 |
C&J |
143 |
27 |
z=D/r*r |
|
138 |
X11F0B--T- |
C&J |
144 |
4 |
|
139 |
X21F0B0-T- |
C&J |
144 |
5 |
|
140 |
X22F0B00T- |
C&J |
144 |
6 |
|
141 |
X33F0B00T1 |
C&J |
144 |
7 |
-L<x<L |
|
142 |
X23F0B00T1 |
C&J |
144 |
7 |
0<x<L |
|
143 |
X33F0B00T- |
C&J |
145 |
8 |
Eqs. (9-11) needed also |
|
144 |
X11F0B55T0 |
C&J |
146 |
6,7 |
Periodic steps in time |
|
145 |
X10F0B1V1 |
C&J |
148 |
4 |
Steady state fin |
|
146 |
X11F0B11V1 |
C&J |
148 |
5 |
Steady state fin, T(0)=V1, T(2L)=V2 |
|
147 |
X12F0B10V1 |
C&J |
148 |
5 |
Steady state fin 0<x<L, V1=V2 |
|
148 |
X11F0B00G1 |
C&J |
152 |
6 |
Steady state, 0<x<L |
|
148 |
X12F0B00G1 |
C&J |
152 |
6 |
Steady state, 0<x<L |
|
148 |
X1F0B1G1CX1F0B1G1 |
C&J |
157 |
5 |
Steady state composite wire |
|
149 |
X1F0B1CX2F0B0 |
C&J |
157 |
9 |
Steady state composite fin |
|
150 |
X1F0B0G1CX2F0B0G1 |
C&J |
157 |
11 |
Steady state composite fin |
|
151 |
X11F0B00T0G1 |
C&J |
159 |
3 |
Transient fin |
|
152 |
X11F0B11 |
C&J |
160 |
5 |
Steady state, -L<x<L |
|
152 |
X11B00Y10B1 |
C&J |
164 |
11 |
Steady state, 2-D |
|
152 |
X11B-0Y10B0 |
C&J |
165 |
18 |
Solution in form of integral |
|
152 |
X11B-0Y00 |
C&J |
166 |
19 |
|
152 |
X10B-Y00 |
C&J |
166 |
20 |
|
152 |
X11B00Y11B10 |
C&J |
167 |
10 |
|
152 |
X23B00Y12B-0 |
C&J |
167 |
16 |
|
152 |
X23B00Y12B10 |
C&J |
168 |
17 |
|
152 |
X33B00Y11B11 |
C&J |
168 |
17 |
|
152 |
X23B00Y13B-0 |
C&J |
168 |
19 |
|
152 |
X23B00Y13B10 |
C&J |
168 |
20 |
|
152 |
X33B00Y13B10 |
C&J |
168 |
20 |
|
152 |
X23B00Y11B-0 |
C&J |
168 |
21 |
|
152 |
X23B00Y11B10 |
C&J |
168 |
22 |
|
152 |
X33B00Y11B10 |
C&J |
168 |
22 |
|
152 |
X33B00Y11B11 |
C&J |
169 |
23 |
T(x,0)=V1, T(x,b)=V2 |
|
152 |
X11B00Y11B-0F0 |
C&J |
170 |
10 |
|
152 |
X33B00Y33B00G1 |
C&J |
171 |
5 |
|
152 |
X11B00Y11B00G1 |
C&J |
171 |
6 |
|
152 |
X10B0Y10B0T1 |
C&J |
171 |
2 |
|
152 |
X30B0Y30B0T1 |
C&J |
172 |
4,5 |
|
152 |
X11B00Y10B0T1 |
C&J |
173 |
8 |
-L<x<L |
|
152 |
X33B00Y30B0T1 |
C&J |
173 |
9 |
-L<x<L |
|
152 |
X11B00Y30B0T1 |
C&J |
173 |
10 |
-L<x<L |
|
152 |
X11B00Y11B00T1 |
C&J |
173 |
11 |
|
152 |
X33B00Y33B00T1 |
C&J |
173 |
12 |
|
152 |
X11B11Y11B00Z11B00 |
C&J |
177 |
9 |
Steady state |
|
152 |
X11B11Y33B00Z33B00 |
C&J |
179 |
23 |
Steady state, -b<y<b, -c<z<c |
|
152 |
X11B11Y23B00Z23B00 |
C&J |
179 |
23 |
Steady state, 0<y<b, 0<y<c |
|
152 |
X13B10Y33B00Z33B00 |
C&J |
180 |
27 |
Steady state |
|
152 |
X10B1Y33B00Z33B00 |
C&J |
180 |
29 |
Steady state -b<y<b, -c<z<c |
|
152 |
X10B1Y23B00Z23B00 |
C&J |
180 |
29 |
Steady state 0<y<b, 0<z<c |
|
152 |
X11B-0Y11B00Z11B00 |
C&J |
183 |
20,21 |
Steady state 0<x<a, 0<y<b, 0<z<c |
|
152 |
X10B0Y10B0Z10B0T1 |
C&J |
184 |
1 |
|
152 |
X30B0Y30B0Z30B0T1 |
C&J |
184 |
2 |
|
152 |
X11B00Y11B00Z1ZB0T1 |
C&J |
184 |
3,4 |
|
152 |
X11B00Y11B00Z11B00T1 |
C&J |
184 |
5 |
or eq. 6 and 7 |
|
152 |
X33B00Y33B00Z33B00T1 |
C&J |
184 |
8 |
|
152 |
X11B11Y11B11Z11B11T0 |
C&J |
185 |
11 |
Same T on all surfaces |
|
152 |
X11B--Y11B--Z11B-1T0 |
C&J |
185 |
12 |
Same f(t) on all surfaces |
|
152 |
X11B22Y11B22Z11B22T0 |
C&J |
185 |
13 |
Same f(t) = at on all surfaces |
|
152 |
X11B00Y11B00Z11B00T- |
C&J |
187 |
5 |
Initial Temp = F(x,y,z) |
|
153 |
R11B11 |
C&J |
189 |
3 |
T(a)=T1 T(b)=T2 a<r<b , steady state |
|
154 |
R13B11 |
C&J |
189 |
5 |
Steady state |
|
155 |
R01B0G1 |
C&J |
191 |
17 |
|
156 |
R03B0G1 |
C&J |
191 |
18 |
|
157 |
R0G1CR3B0 |
C&J |
192 |
22,23 |
Insulated wire with energy generation |
|
158 |
R01B0G2 |
C&J |
192 |
27 |
Linear variation of electrical |
|
|
|
|
resistance of wire with temperature |
|
159 |
R21B00G2 |
C&J |
192 |
28 |
Linear variation of electrical |
|
|
|
|
resistance of wire with temperature |
|
160 |
R01B0T- |
C&J |
198 |
4 |
|
161 |
R01B0T1 |
C&J |
199 |
5 |
|
162 |
R01B0T3 |
C&J |
199 |
7 |
T(r,0)=V-Kr |
|
163 |
R01B1T0 |
C&J |
199 |
8 |
Eq. (10), same page is dimensionless |
|
164 |
R01B-T0 |
C&J |
201 |
12 |
|
165 |
R01B2T0 |
C&J |
201 |
13 |
T(a,t)=kt |
|
166 |
R01B6T0 |
C&J |
201 |
14 |
T(a,t)=Vsin(wt+C) |
|
167 |
R03B0T- |
C&J |
201 |
3 |
|
168 |
R03B0T1 |
C&J |
202 |
4 |
|
169 |
R03B1T0 |
C&J |
202 |
8 |
Fluid at V |
|
170 |
R03B2T0 |
C&J |
202 |
10 |
Fluid at kt |
|
171 |
R03B6T0 |
C&J |
202 |
11 |
Fluid at V sin(wt+e) |
|
172 |
R02B1T0 |
C&J |
203 |
1 |
|
173 |
R02B0T- |
C&J |
204 |
3 |
|
174 |
R01B0T0G1 |
C&J |
204 |
1 |
|
175 |
R01B0T0Gt4 |
C&J |
204 |
2 |
g = a exp(-bt) |
|
176 |
R03B0T0G1 |
C&J |
205 |
3 |
|
177 |
R11B00T- |
C&J |
207 |
12 |
|
178 |
R11B00T1 |
C&J |
207 |
13 |
|
179 |
R1B11T- |
C&J |
207 |
15 |
T(a,t)=T1 T(B,t)=T2 |
|
180 |
R01B-f00Z00 |
C&J |
209 |
6 |
T(a,t)=f(f,z) Steady state |
|
181 |
R01B(z-)Z00 |
C&J |
209 |
7 |
T(a,t)=f(z), Steady state |
|
182 |
R01B5Z00 |
C&J |
209 |
8 |
T(a,t)=1, z>0; =0, Z<0; Steady state |
|
183 |
R01B5Z00V(z1) |
C&J |
209 |
11 |
T(a,t)=1, z>; =0, z<0; Steady
state, Velocity = U |
184 |
R01B0f00T- |
C&J |
211 |
1 |
|
185 |
R03B0f00T- |
C&J |
211 |
2 |
T(r,f,0)=F(r,f) |
|
186 |
R01B0f00Z00T- |
C&J |
212 |
4 |
T(r,f,z,0)=F(r,f,z) |
|
187 |
R01B0f11B00T- |
C&J |
213 |
5 |
T(r,f,0)=F(r,f) |
|
188 |
R01B0f11B00T1 |
C&J |
213 |
6 |
|
188 |
R00Z(1,2)0B(1,0) |
C&J |
215 |
5,9 |
Steady, T(r,0)=TO for 0<r<a |
|
188 |
R00Z20B5 |
C&J |
215 |
7 |
q=c for 0<r<a |
|
188 |
R00Z00C5R00Z0 |
C&J |
216 |
12 |
Heat transfer only 0<r<a |
|
|
|
13 |
T=0 at z=00; T=TO at z=-00; two half
spaces in contact |
188 |
R00Z20B5 |
C&J |
216 |
16 |
Average temperature |
|
188 |
R00Z(2,1)0B |
C&J |
217 |
17 |
|
188 |
R03B0Z11B-0 |
C&J |
219 |
8,9 |
|
188 |
R03B0Z11B10 |
C&J |
219 |
10 |
|
188 |
R03B0Z13B-0 |
C&J |
219 |
13 |
|
188 |
R01B0Z11B-0 |
C&J |
219 |
14 |
|
188 |
R01B-Z11B00 |
C&J |
220 |
16 |
|
188 |
R01B-Z33B00 |
C&J |
220 |
17 |
|
188 |
R02B5Z22B00 |
C&J |
220 |
19 |
f=c, -L+b>z>-L; f=-c, L>z>L-b, f=0 otherwise |
|
188 |
R11B-0Z11B00 |
C&J |
220 |
20 |
|
188 |
R21B-0Z11B00 |
C&J |
221 |
22 |
|
188 |
R21B50Z11B00 |
C&J |
221 |
24 |
|
188 |
R0G1CR1B0Z11B00 |
C&J |
221 |
25 |
Composite source wire with volumetric energy |
|
188 |
R0G1CR1B0Z11B00 |
C&J |
222 |
27 |
|
188 |
R11B00Z11B-0 |
C&J |
222 |
28 |
|
188 |
R13B-OZ33B00 |
C&J |
222 |
29 |
|
188 |
R01B0Z10B- |
C&J |
222 |
31 |
|
188 |
R01B-Z10B0 |
C&J |
222 |
32 |
|
188 |
R03B0Z10B- |
C&J |
223 |
33 |
|
188 |
R01B-Z30B0 |
C&J |
223 |
34 |
|
188 |
R02B0B0Z22B55 |
C&J |
223 |
35 |
q=c, 0<r<a at z=0, q=0, a<r<b |
|
|
|
|
q=c, 0<r<a tat z=L, q=0, a<r<b |
|
188 |
R01B0Z11B00G1 |
C&J |
224 |
38 |
|
188 |
R21B0-Z11B00 |
C&J |
224 |
39 |
|
188 |
R21B00Z11B |
C&J |
224 |
40 |
|
188 |
R01B0Z11B00G* |
C&J |
224 |
41 |
g=a(1+bT) |
|
188 |
R01B0Z11B00F1 |
C&J |
224 |
41 |
|
188 |
R01B0Z11B00T1 |
C&J |
225 |
45 |
|
188 |
R01B1Z11B11T0 |
C&J |
227 |
6 |
|
188 |
R03B0Z33B00T1 |
C&J |
227 |
7 |
|
188 |
R01B0Z33B00T1 |
C&J |
227 |
8 |
|
188 |
R01B0Z11B00T1 |
C&J |
227 |
10 |
|
188 |
R03B0Z10B0T1 |
C&J |
227 |
11 |
|
188 |
R01B0Z30B0T1 |
C&J |
227 |
12 |
|
188 |
R01B0Z11B00f00T1- |
C&J |
229 |
|
middle of pages |
|
190 |
RS13B11 |
C&J |
231 |
4 |
Steady state |
|
191 |
RS33B11 |
C&J |
231 |
5 |
Steady state |
|
192 |
RS01B0G1 |
C&J |
232 |
12 |
Steady state |
|
193 |
RS03B0G1 |
C&J |
232 |
13 |
Steady state |
|
194 |
RS10B1 |
C&J |
232 |
14 |
Steady state |
|
195 |
RS0GC3RS0 |
C&J |
232 |
14B |
Steady state.MATL1 0<r<A, MATL2 R> |
|
196 |
RS01B-T- |
C&J |
233 |
3 |
|
197 |
RS01B1T0 |
C&J |
233 |
4,5 |
TWO FORMS OF SOLUTION |
|
198 |
RS01B2T0 |
C&J |
235 |
10 |
T(a,t)=kt 0<r<A |
|
199 |
RS01B6T0 |
C&J |
235 |
12 |
T(a,t)=sin(wt+e) 0<r<A |
|
200 |
RS01B0T2 |
C&J |
235 |
13, |
T(r,0)=V(A-R)/A , 0<r<A |
|
201 |
RS01B0T3 |
C&J |
236 |
15 |
T(r,0)=V(A*A-R*R)/A*A 0<r<A |
|
202 |
RS01B0T6 |
C&J |
236 |
17 |
T(r,0)=(V/R)*sin(pi*R/A) 0<r<A |
|
203 |
RS01B0T7 |
C&J |
236 |
18 |
T(r,0)=Vexp(C(R-A)) 0<r<A |
|
204 |
RS01B0T5 |
C&J |
236 |
19, |
T(r,0)=<V 0<r<B, 0
B<r<A! TWO FORMS OF SOLUTION |
205 |
RS01B0T- |
C&J |
237 |
21 |
FOR SMALL VALUE OF kt/(A*A) |
|
206 |
RS01B0T3 |
C&J |
237 |
23 |
T(r,0)=BO+B1*R+B2*R**2+B3*R**3 |
|
207 |
RS03B0T- |
C&J |
237 |
8 |
|
208 |
RS03B0T1 |
C&J |
238 |
10 |
|
209 |
RS03B2T0 |
C&J |
238 |
11 |
VO=kt |
|
210 |
RS03B6T0 |
C&J |
238 |
12 |
VO=Vsin(wt+e) |
|
211 |
RS04B0T-0 |
C&J |
240 |
2 |
-4*pi*A*A*K*DV/DR=M'C'DU/DT,
R=A |
|
212 |
RS04B0T10 |
C&J |
240 |
5 |
|
213 |
RS02B1T0 |
C&J |
242 |
1 |
|
214 |
RS01B0T0G1 |
C&J |
243 |
6,7 |
EQ7 FOR SMALL VALUE OF kt/A*A |
|
215 |
RS01B0T0GR2 |
C&J |
243 |
8,9 |
G(R)=GO(A-R)/A |
|
216 |
RS01B0T0GR3 |
C&J |
243 |
10, |
G(R)=GO(A*A-R*R)/G*G TWO FORMS |
|
|
|
|
OF SOLUTION |
|
217 |
RS01B0TGR6 |
C&J |
244 |
12 |
G(R)=(GO/R)sin(pi*R/A) |
|
218 |
RS01B0T0GGR7 |
C&J |
244 |
13 |
G(R)=GOexp(R-A) |
|
219 |
RS01B0T0GT7 |
C&J |
245 |
14, |
G(T)=GOexp(-A*T) TWO FORM OF SOL |
|
220 |
RS01B0T0GT5 |
C&J |
245 |
16 |
G(T)=<0 0<r<B, GOexp(-C*T) B<r<A! |
|
221 |
RS01B0T0GR- |
C&J |
245 |
17 |
G=G(R) |
|
222 |
RS03B1T3 |
C&J |
245 |
19 |
|
223 |
RS03B1T3 |
C&J |
246 |
20B |
|
224 |
RS11B11T- |
C&J |
246 |
1 |
|
225 |
RS33B00T- |
C&J |
246 |
2 |
|
226 |
RS12B01T0 |
C&J |
247 |
3 |
|
227 |
RS10B-T- |
C&J |
247 |
1 |
|
228 |
RS10B1T0 |
C&J |
247 |
2 |
|
229 |
RS30B1T0 |
C&J |
248 |
3 |
|
230 |
RS20B1T0 |
C&J |
248 |
4 |
|
231 |
RS01B-Q00L00 |
C&J |
250 |
4 |
T(A,Q,L,t)=F(Q,L) |
|
232 |
RS00Q11B00L00T- |
C&J |
252 |
12 |
|
|
X00Y00Z00T0Gxyzt7 |
C&J |
256 |
2 |
Green's function |
|
233 |
RS00Tr5 |
C&J |
257 |
6 |
T(r,0) = V, 0<r<a, T(r,0) = 0 for r>a |
|
234 |
RS00Tr5 |
C&J |
257 |
7 |
Small a |
|
235 |
RS00T0Grt7 |
C&J |
257 |
7b |
Greens's function for source at r = 0 |
|
|
X00Y00Z00T0Gxyzt7 |
C&J |
257 |
8 |
Anisotropic material, different
conductivities in x,y and z |
236 |
X00F0T0Gxt7 |
C&J |
257 |
9 |
Green's function for rod losing heat
to surroundings (fin) |
237 |
X00F0Y00F0TOGxyt7 |
C&J |
258 |
10 |
Green's function for sheet fin with
source at origin |
238 |
X00Y00T0Gxyt7 |
C&J |
258 |
1 |
Green's function |
|
|
R0000T0Grt7 |
C&J |
258 |
3 |
Green's function |
|
239 |
X00T0Gxt7 |
C&J |
259 |
4 |
Green's function |
|
240 |
R00T0Grt7 |
C&J |
259 |
5 |
Green's function |
|
241 |
RS00T0Grt7 |
C&J |
259 |
6 |
Green's function |
|
242 |
R00X00T0Grxt7 |
C&J |
260 |
7 |
Green's function |
|
243 |
R00Z00T0Gzt7 |
C&J |
260 |
9 |
Instantaneous disk source, g(r,0,t)
= g0?(t') for r ' < a |
|
|
|
at z ' = |
|
244 |
R00T |
C&J |
260 |
11 |
T(r,0)=F(r) |
|
245 |
R00Tr5 |
C&J |
260 |
12 |
T(r,0) = V, 0<r<a; T(r,0) = 0, r > a |
|
246 |
X00Y00Z00T0Gxyzt7 |
C&J |
261 |
1 |
|
247 |
RS00T0Gr7 |
C&J |
261 |
2 |
Point source at r = 0 |
|
248 |
R00T0Gt |
C&J |
261 |
3 |
Line source with time variable strength |
|
249 |
R00T0Gr7 |
C&J |
261 |
5 |
Line source with constantiable
strength |
|
250 |
X10B0Y00T0Gxy7 |
C&J |
262 |
7 |
Constant line source in
semi-infinite body with isothermal surface |
251 |
X00T0G(x7t-) |
C&J |
262 |
8 |
Time variable plane heat source at x' |
|
252 |
X00G(x7t1) |
C&J |
263 |
9 |
Constant plane heat source at x' |
|
253 |
RS00T0G(r7t-) |
C&J |
263 |
10 |
Arbitrary time variable spherical source |
|
254 |
RS00T0G(r7t1) |
C&J |
263 |
11 |
Constant spherical source |
|
255 |
RS00T0G(r7t6) |
C&J |
263 |
12 |
Periodic point heat source at r' = 0 |
|
256 |
R00T0G(r7t6) |
C&J |
263 |
13 |
Periodic line heat source at r' = 0 |
|
257 |
X00Z20Bx5T0 |
C&J |
264 |
1 |
T(x,0,t) given for q = constant over x<0 |
|
258 |
X00Z20Bx5T0 |
C&J |
264 |
3 |
T(x,0,t) given for q = constant over -a<x<a |
|
259 |
R00Z20Br5T0 |
C&J |
264 |
4 |
T(0,z,t) given for q = constant over 0<r<a |
|
|
X00Y00Z20B(xy5) |
C&J |
265 |
6,7 |
Maximum and average heated surface
temperatures, rectangular heat source |
|
R00Z00T0Grz5t1 |
C&J |
266 |
1 |
T(0,0,t) for constantant energy
generation over 0 < r < a, -b < z < b |
|
|
|
|
|
R00Z00T0Grz5t1 |
C&J |
266 |
1 |
T(0,0,t) for constant energy
generation over 0 < r < a, -b < z < b |
|
|
|
|
260 |
X00Y00Z00T0Ux1G(xyz7t1) |
C&J |
267 |
1 |
Moving
point heat source (or moving medium about a fixed point heat source at
origin) |
|
|
|
|
|
X00Y00Z00Ux1Gxyz7 |
C&J |
267 |
1 |
Steady solution for moving point
heat source (or moving medium about a fixed point heat source) |
261 |
X00Z00Ux1Gxy7 |
C&J |
267 |
3 |
Steady solution for moving line heat
source (or moving medium about a fixed point heat source) |
262 |
X00Y00Z22B00UX1GPX0 |
C&J |
268 |
7 |
|
|
|
|
|
|
|
|
|
263 |
X00Y00Z22B00VX1GPX0Y3Z0T1 |
C&J |
268 |
8 |
Heat emitted during time period
(0,t), THEN t®∞. |
|
|
|
Approach OO for s.s. at y-axis |
|
264 |
X00Y00Z00VX1GPX7Y3Z0T1 |
C&J |
269 |
10 |
For s.s along strip, -B<x<B, -OO<Y<OO, Z=0 |
|
265 |
X1GPX7T7Z0T1 |
C&J |
270 |
13 |
Heat emitted along rectalinear source, |
|
|
|
|
-B<x<B
-L<Y<L T approach OO for s.s. |
|
266 |
X00Y00Z00T0GDX7Y7T0 |
C&J |
271 |
4 |
Instantaneous line doublet |
|
267 |
X00Y00Z00T0GDX7T0 |
C&J |
271 |
5 |
Instantaneous plane doublet |
|
268 |
X00Y00Z00GDX7T0 |
C&J |
271 |
6 |
Continuous plane doublet |
|
269 |
X10B0T- |
C&J |
274 |
1 |
Source at the plane X' |
|
270 |
X11B00T- |
C&J |
274 |
2 |
Alternating source-sinks, sink at |
|
|
|
|
-X'+2NA, sourse at X'+2NA |
|
271 |
X11B-0T0GDX6T- |
C&J |
276 |
6 |
Doublet at 2NA N=0, 1,2,G*P(T)=2K* |
|
272 |
X20B0T- |
C&J |
276 |
7 |
Source at X=X', sink at X=-X' |
|
273 |
X21B00T- |
C&J |
276 |
8 |
Alt source at +/-4NA+/-X', sink at
+/-(4N+2)A+/-X |
274 |
X10B1T0 |
C&J |
305 |
5 |
|
275 |
X10B3T0 |
C&J |
305 |
6 |
T(0,t)=V0 t^(n/2); n = any positive integer |
|
276 |
X10B-T0 |
C&J |
305 |
7 |
|
277 |
X30B1T0 |
C&J |
306 |
top |
|
278 |
X40B0T(10) |
C&J |
306 |
11 |
|
279 |
X40B1T(00) |
C&J |
306 |
12 |
|
280 |
X60B0T(10) |
C&J |
307 |
18 |
|
281 |
X30B0T0Gt3 |
C&J |
308 |
23 |
g(t)=k0 t^(n/2), n = -1, 0, and any
positive integer |
282 |
X10B0T0Gx5 |
C&J |
308 |
28 |
|
283 |
X21B01T0 |
C&J |
309 |
3 |
Best for small dimensionless times |
|
284 |
X11B01T0 |
C&J |
310 |
6 |
Best for small dimensionless times |
|
285 |
X22B01T0 |
C&J |
310 |
8 |
Best for small dimensionless times |
|
286 |
X23B00T1 |
C&J |
311 |
11 |
Best for small dimensionless times |
|
287 |
X11B00T0Gt3 |
C&J |
311 |
12 |
g(t)=k0 t^(n/2), n = -1, 0, and any
positive integer |
288 |
X21B01T0 |
C&J |
313 |
6 |
|
289 |
X21B0-T0 |
C&J |
313 |
7 |
|
290 |
X11B01T0 |
C&J |
313 |
10 |
|
291 |
X11B00T0Gt4 |
C&J |
315 |
20 |
g(t) = a exp(-ct) |
|
292 |
X23B00T1 |
C&J |
316 |
24 |
|
293 |
X62B00T(10) |
C&J |
317 |
29,30 |
Well-stirred fluid with convective
condition between fluid and solid |
294 |
X10B6T0 |
C&J |
319 |
8 |
T(0,t) = Vsin(ωt+e) |
|
295 |
X1B1CX0T00 |
C&J |
321 |
16,17 |
|
296 |
X1B0G1CX0T00 |
C&J |
323 |
24,26 |
|
297 |
X1B1CX1B0T00 |
C&J |
324 |
30, |
EQ 30 -L<x<0, EQ 31 0<x<A |
|
298 |
R01B1T0 |
C&J |
328 |
7 |
|
299 |
R01B2T0 |
C&J |
328 |
8 |
|
300 |
R02B1T0 |
C&J |
329 |
11 |
|
301 |
R03B1T0 |
C&J |
329 |
15 |
|
302 |
R05B0T(10) |
C&J |
330 |
20 |
|
303 |
R01B0T1G1 |
C&J |
330 |
24 |
|
304 |
R01B1T0 |
C&J |
331 |
3 |
For small values of time,
κt/a2<0. 02, r/a not small |
305 |
R02B1T0 |
C&J |
331 |
5 |
For small values of time,
κt/a2<0. 02, r/a not small |
306 |
R03B1T0 |
C&J |
331 |
6 |
For small values of time,
κt/a2<0. 02, r/a not small |
307 |
R33B11T0 |
C&J |
333 |
10 |
|
308 |
R21B10T0 |
C&J |
334 |
12 |
|
309 |
R10B1T0 |
C&J |
335 |
6 |
|
310 |
R10B1T0 |
C&J |
336 |
7 |
For small values of time,
κt/a2<0.02, r/a not large |
311 |
R30B0T1 |
C&J |
337 |
15 |
|
312 |
R20B1T0 |
C&J |
338 |
17 |
|
313 |
R20B1T0 |
C&J |
339 |
18 |
For small values of time,
κt/a2<0.02, r/a not large |
315 |
R10B6T0 |
C&J |
339 |
20 |
|
316 |
R10B0Z10B0T1 |
C&J |
339 |
21 |
Product solution |
|
317 |
R20B1T0 |
C&J |
341 |
11 |
For large values of time, κt/a2 |
|
318 |
R40B0T(10) |
C&J |
342 |
3 |
|
|
R40B0T-10 |
C&J |
342 |
5 |
Solution for 0<r<a, which is independent of r |
|
319 |
R40B1T(00) |
C&J |
342 |
7 |
Interior cylinder has constant
energy generation |
|
R50B0T(10) |
C&J |
344 |
9,11 |
Temperature at r=0 |
|
|
R50B1T(00) |
C&J |
344 |
13,14 |
Temperature at r=0 |
|
|
R50B1T(00) |
C&J |
345 |
16,17 |
Temperature at r=0, small times |
|
|
R50B1T(00) |
C&J |
345 |
16,17 |
Temperature at r=0, large times |
|
320 |
R0CR0T(10) |
C&J |
346 |
7,8 |
|
321 |
R0G1CR0T00 |
C&J |
347 |
13,14 |
|
322 |
RS01B0T1 |
C&J |
348 |
6 |
|
323 |
RS00T0Gr5 |
C&J |
349 |
13,14 |
|
324 |
RS50B1T00 |
C&J |
349 |
18 |
|
325 |
RS50B1T00 |
C&J |
350 |
19 |
Solution for small times, 0<r<a |
|
326 |
RS50B1T00 |
C&J |
350 |
20 |
Solution for large times, 0<r<a |
|
327 |
R50B0T(10) |
C&J |
350 |
21 |
Temperature at 0<r<a |
|
328 |
R50B0T(10) |
C&J |
350 |
22 |
Temperature at 0<r<a, small time solution |
|
329 |
R50B0T(10) |
C&J |
350 |
23 |
Temperature at 0<r<a, large time solution |
|
330 |
R41B0T(11) |
C&J |
350 |
24 |
|
331 |
R41B1T(00) |
C&J |
350 |
27 |
|
332 |
R0CR1B0T11 |
C&J |
352 |
39,40 |
Additional terms in eqs. 43,44 may be needed |
|
|
X10B0T0Gxt7 |
C&J |
357 |
1 |
Green's function |
|
333 |
X10B-T0Gx- |
C&J |
357 |
2 |
Green's function solution for
arbitrary conditions |
|
X00T0Gxt7 |
C&J |
358 |
3 |
Green's function |
|
334 |
X30B0T0Gxt7 |
C&J |
358 |
6 |
Green's function |
|
335 |
X30B-T- |
C&J |
359 |
7 |
Green's function solution for
arbitrary conditions |
336 |
X11B00T0Gxt7 |
C&J |
360 |
2 |
Green's function |
|
337 |
X33B00T0Gxt7 |
C&J |
360 |
4 |
Green's function |
|
338 |
X22B00T0Gxt7 |
C&J |
361 |
7 |
Green's function |
|
339 |
X10B0Y10B0T0Gxt7 |
C&J |
361 |
2 |
Green's function |
|
340 |
X11B00Y11B00T0Gxt7 |
C&J |
361 |
3 |
Green's function |
|
341 |
X22B00Y22B00T0Gxt7 |
C&J |
362 |
4 |
Green's function |
|
342 |
X11B00Y11B00Z11B00T- |
C&J |
362 |
2 |
Green's function solution for arbitrary initial T |
|
343 |
X11B-0Y11B00Z11B00T0 |
C&J |
362 |
3 |
Green's function solution for arbitrary T at x=0 |
|
344 |
X11B00Y11B00Z11B00T0G- |
C&J |
363 |
4 |
Green's function solution for arbitrary source |
|
345 |
X11B00Y11B00Z11B00T0G1 |
C&J |
363 |
5 |
Green's function solution for constant source |
|
346 |
X0CX0T0Gxt7 |
C&J |
364 |
8,9 |
Green's function for composite |
|
347 |
X0C3X0T0Gxt7 |
C&J |
364 |
11,12 |
Green's function, imperfect contact |
|
348 |
X1B0CX1B0T00Gxt7 |
C&J |
365 |
13,14 |
Green's function finite composite plate |
|
349 |
X1B0CX0T00Gxt7 |
C&J |
365 |
16 |
Green's function for composite |
|
350 |
RS00T0Grt7 |
C&J |
366 |
1 |
Green's function sphere |
|
|
RS01B0T0Grt7 |
C&J |
366 |
7,9 |
Green's function, two forms of solution |
|
351 |
RS03B0T0Grt7 |
C&J |
367 |
10 |
Green's function |
|
352 |
RS33B00T0Grt7 |
C&J |
367 |
13 |
Green's function |
|
353 |
RS30B0T0Grt7 |
C&J |
368 |
16 |
Green's function |
|
|
R00ToGrt7 |
C&J |
368 |
1 |
Green's function |
|
354 |
R01B0T0Grt7 |
C&J |
369 |
5 |
Green's function |
|
355 |
R03B0T0Grt7 |
C&J |
369 |
7 |
Green's function |
|
356 |
R05B0T(00)Grt7 |
C&J |
370 |
9 |
Green's function |
|
357 |
R33B00T0Grt7 |
C&J |
370 |
11 |
Green's function |
|
358 |
R30B0T0Grt7 |
C&J |
370 |
12 |
Green's function |
|
359 |
X10B0Y00Z00T0Gxyxt7 |
C&J |
370 |
1 |
Green's function |
|
|
X10Byzt-Y00Z00Txyz- |
C&J |
371 |
3 |
Green's function solution, arbitrary conditions |
|
|
X30B0Y00Z00T0Gxyzt7 |
C&J |
371 |
4 |
Green's function |
|
|
X00Y00Z00T0Gxyzt7 |
C&J |
371 |
1 |
Green's function |
|
360 |
X00Y00Z11B00T0Gxyzt7 |
C&J |
373 |
12,15 |
Two forms of Green's function |
|
361 |
X00Y00Z33B00T0Gxyzt7 |
C&J |
373 |
17 |
Green's function |
|
362 |
X00Y00Z22B00T0Gxyzt7 |
C&J |
374 |
18,19 |
Two forms of Green's function |
|
363 |
R00X40B0T00Grxt7 |
C&J |
375 |
7 |
Green's function with type 4
boundary cond. Eq. 2 |
364 |
X00Y00Z0CZ0T0Gt7 |
C&J |
376 |
5,6 |
Green's function source at (0,0,z') for z=0 |
|
365 |
R01B0f00Z00T0Grfzt7 |
C&J |
377 |
6 |
Green's function with source at (r',f',0) |
|
366 |
R03B0f00Z00T0Grfzt7 |
C&J |
378 |
7 |
Green's function with source at (r',f',0) |
|
367 |
R10B0f00Z00T0Grfzt7 |
C&J |
378 |
8 |
Green's function |
|
368 |
R30B0f00Z00T0Grfzt7 |
C&J |
378 |
3 |
Green's function |
|
369 |
R00f11B00T0Grft7 |
C&J |
379 |
7 |
Green's function |
|
370 |
R00f22B00T0Grft7 |
C&J |
379 |
8 |
Green's function |
|
|
R00f11B00T0Grft7 |
C&J |
380 |
9 |
Green's function,wedge of angle 2? |
|
371 |
R01B0f00Z11B00T0Grfzt7 |
C&J |
380 |
2 |
Green's function |
|
|
R11B00f00Z11B00T0Gr |
C&J |
380 |
3 |
Green's function |
|
372 |
RS01B0f00T0Grft7 |
C&J |
382 |
8 |
Green's
function for a point source at sphere origin |
373 |
RS03B0f00Grft7 |
C&J |
382 |
11 |
Green's
function for a point source at sphere origin |
374 |
RS10B0f00Grft7 |
C&J |
382 |
13 |
Green's function for a point source at (r',0,0) |
|
375 |
RS30B0f00T0Grft7 |
C&J |
382 |
14 |
Green's function for a point source at (r',0,0) |
|
376 |
RS00f01B0T0Grft7 |
C&J |
384 |
7 |
Green's function for a point source
at origin of cone |
377 |
RS00f00q01B0T0Grfqt7 |
C&J |
385 |
11 |
Green's function for a point source
in spheres (r,q,f) coordinates |
378 |
R02B0f00T0Grft7 |
C&J |
386 |
11,12 |
Continuous source through (f',0) |
|
379 |
X10B2T2G1V1 |
C&J |
388 |
7 |
F(x)=To +Ax, T(0,t)=T1 +bt |
|
380 |
X30B0T1V1 |
C&J |
389 |
10 |
|
381 |
X10B6V1 |
C&J |
389 |
14 |
Steady periodic, constant velocity |
|
382 |
X11B01F0T0V1 |
C&J |
391 |
3 |
|
|
X11B05T0 |
C&J |
400 |
6 |
|
|
X11B0-T0 |
C&J |
401 |
10,12 |
Steady periodic square wave |
|
|
X20B-T0 |
C&J |
402 |
14,15 |
Steady periodic square wave |
|
|
RS00G-T0 |
C&J |
402 |
17 |
Steady periodic point source |
|
|
R00G-T0 |
C&J |
402 |
20 |
Steady periodic line source |
|
383 |
X21B00T0G- |
C&J |
404 |
6 |
g(T)=K(A+BT) for t>0 |
|
384 |
X23B00T0G- |
C&J |
405 |
10 |
g(T)=K(A+BT), t>0 |
|
385 |
R01B0T0G- |
C&J |
405 |
13 |
g(T)=K(A+BT), t>0 |
|
386 |
X21B00G- |
C&J |
406 |
19 |
g(T)=B exp(T), steady state |
|
|
X10B1T0 |
C&J |
413 |
12 |
Space variable conductivity, k = k0xn |
|
|
X3B1C3XC3X…C3X3B0T0 |
C&J |
416 |
9 |
Chain of n laminated slabs |
|
388 |
X11B10Y11B00Z11B00T0 |
C&J |
417 |
6 |
|
|
X11Bt60Y11B00Z11B00T0 |
C&J |
417 |
8,9 |
|
|
X11B11Y33B00Z00B00T0 |
C&J |
418 |
11,12 |
Transient part. For S.S. part,
C&J 6.2 (23) |
|
389 |
R03B0X11B10T0 |
C&J |
418 |
13 |
|
390 |
R03B0X13B10T0 |
C&J |
418 |
14 |
|
391 |
R03B0X10B1T0 |
C&J |
419 |
17 |
|
392 |
R01B1X10B0T0 |
C&J |
419 |
19 |
|
393 |
R00f11B10T0 |
C&J |
420 |
23 |
|
394 |
R00f11B11T0 |
C&J |
420 |
24 |
T(r,0,t) = 1, T(r,?0,t) = 1 |
|
395 |
RS00f01B1T0 |
C&J |
420 |
25 |
|
|
R00X11B00f00 |
C&J |
423 |
5,6 |
Green's function, steady state |
|
|
R01B0X00f00 |
C&J |
423 |
7 |
Green's function, steady state |
|
|
R01B0X11B00f00 |
C&J |
423 |
8,9 |
Green's function, steady state |
|
398 |
X0CX0Y11B05 |
C&J |
428 |
22,23 |
|
401 |
R00Z20B5 |
C&J |
462 |
8 |
-kdT(r,0)/dz
=q0 , 0<r<a, dT(r,0)/dz =0, r>a |
|
402 |
X11B11T0 |
C&J |
463 |
|
T(0,t) = T(L,t) = 1 |
|
403 |
X11B00Y11B-0 |
C&J |
464 |
|
|
404 |
R00f11B11T0 |
C&J |
465 |
10 |
T(r,0,t) = T(r,f0,t) = 1 |
|
|
|
|
|
|
|
|