Error List, January 2019 Heat Conduction Using Green's Functions CRC Press, 2nd Edition, 2011

page/line	error	replace by
45, problem 1.17	first '='	' '(replace '=' by ' ')
74, Eq. 3.44, third line	$F(\mathbf{r}')$	$F(\mathbf{r}_i')$
80, Eq. 3.66, 2nd line	$G(\mathbf{r},t/\mathbf{r}',0)$	$G(\mathbf{r},t/\mathbf{r}_i',0)$
103, in Fig. 4.1		
2nd line from bottom:	2L + x + x'	2L x + x'
133, Eq. (4.146c)	$\frac{dG(L, x', u)}{dx} = 0$	$\frac{\partial G(L, x', u)}{\partial x} = 0$
133, Eq. (4.147a)	$\frac{\partial^2 \overline{G}}{\partial x^2} = 0$	$\frac{d^2\overline{G}}{dx^2} = 0$
147, problem 4.24	"eigenvalue expansions"	"eigenfunction expansions"
147, problem 4.25	"eigenvalue expansions"	"eigenfunction expansions"
201, Fig. 6.5 caption	(case X22B00)	(case X12B00)
205, Eq. (6.83)	$e^{-\beta_m^2 \alpha(t-\tau)/L^2}$	$e^{-\beta_m^2 \alpha t/L^2}$
205, Eq. (6.84)	$\frac{q_0}{k}(1 \frac{x}{L})$	$\frac{q_0 L}{k} (1 \frac{x}{L})$
220, Eq. (6.154)	$=Y\pi^{1/2}\dots$	$=2\pi^{1/2}\dots$
266, 5 lines below Eq. (7.115)	"Refer to section 4.6"	"Refer to section 4.5"
271, Eq. (7.134a)	$\frac{2r}{\pi}$ []	$\frac{2}{\pi} \frac{r}{a} []$
271, Eq. (7.134a)	$(1 r^{-2})$	$(1 (a/r)^2)$
278, Eq. (7.155)	$\int_{\phi'=0}^{2\pi}$	$\int_{\phi'=0}^{\varphi_0}$
279, Eq. (7.160)	$\int_{\phi'=0}^{2\pi}$	$\int_{\phi'=0}^{\phi_0} (3 \text{ places})$
334, 2 lines below Eq. (9.5)	(kelvin)	(Kelvin)
336, 3 lines below Eq. (9.12b)	"given in section 1.3.2;"	"given in section 1.7.2;"
362, 2 lines above Eq. (9.127)	Norm N_{ϕ} is equal to π	Norm N_{ϕ} is equal to 2π
- ,	for $n = 0$ and 2π for $n = 1$.	for $n = 0$ and π for $n = 1$.
366, Problem 9.1, 6th line	"(9.4 and 9.5"	"9.4 and 9.5" (erase paren.)
520, No. 2	transform of $1/t$ not defined	drop No. 2 entirely

(Continued on page 2.)

Error List, January 2019 Heat Conduction Using Green's Functions CRC Press, 2nd Edition, 2011 CONTINUED

page/line	error	replace by
521, number 20	$\frac{s}{(s^2 + a^2)}$	$\frac{s}{(s^2+a^2)^2}$
521, number 21	$\frac{s^2}{(s^2+a^2)}$	$\frac{s^2}{(s^2+a^2)^2}$
521, number 22	$\frac{s^2 a^2}{(s^2 + a^2)}$	$\frac{s^2 a^2}{(s^2 + a^2)^2}$
523, number 51	$\frac{e^{-k\sqrt{s}}}{s(a+P\overline{s})}$	$\frac{ae^{-k\sqrt{s}}}{s(a+\mathcal{P}\overline{s})}$
525, Eq. (L.15)	$i\beta$	i 7 (two places)
558, R12Φ00 title	$\partial G/\partial x = 0$	$\partial G/\partial r = 0$
558, 1st equation	a	α (in exponent)
558 , def. of R for R12 Φ 00	$R_{mn}(\beta_{mn},r)$	$R_n(\beta_{mn},r)$
558 , def. of R for R13 Φ 00	$R_{mn}(\beta_{mn},r)$	$R_n(\beta_{mn},r)$
559, def. of R for $R23\Phi00$	$R_{mn}(\beta_{mn},r)$	$R_n(\beta_{mn},r)$
560, def. of R for $R33\Phi00$	$R_{mn}(\beta_{mn},r)$	$R_n(\beta_{mn},r)$
575, second-to-last case	RS00Φ00	R00Φ00 (cyl. coordinates)
575, last case	RSIJΦ00	RIJΦ00 (cyl. coordinates)