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PREFACE 
 
This handbook of integrals grew out of a research project carried out by Beck Engineering Consultants 
Company. The research, to develop computer codes which compute solutions of the transient heat 
conduction equation to high accuracy, was funded by Sandia National Laboratories. These codes were 
subsequently used in code verification work to assess accuracies of more complex numeric codes. The 
integrals developed in this presentation were suggested by Dr. James V. Beck and associates during the 
course of the research from 2000 to 2005. 
 
The work of Beck Engineering centered on the linear heat equation with constant coefficients in mostly 
rectangular geometries in all three dimensions. While many classical problems have been solved 
analytically, the solutions can achieve high accuracies with a reasonable amount of computer work only 
over very limited ranges of variables, especially in the time variable. In these cases, the classical 
solutions are, for the most part, only computable for the small and large times. However, newer, more 
flexible methods, which were able to fill-in the intermediate times, were applied to achieve (absolute) 
accuracies on the order of 1010− . 
 
The research in this volume was directed toward numerical evaluation of diffusion related integrals in 
subroutines which would return accurate answers over stated ranges of variables. In keeping with the 
goal of high accuracies, all subroutines were developed in double precision arithmetic. For the IBM PC 
and similar machines, this means about 16 digits. In many fundamental integrals, much effort was 
devoted to achieving relative accuracy (significant digits) rather than absolute accuracy (decimal 
places). Since it is difficult to compute to full precision and avoid all losses of significance, most 
subroutines returned overall accuracies of 13(10 ) O −  or better over common ranges of variables. This 
specification allows several orders of magnitude latitude in the application to problems where only 
accuracies of 1010−  are required. 
 
This handbook is presented in four parts.  Chapter 1 presents a Table of Integrals with references to 
Chapter 2 where the main formulae are presented in handbook format. Formulae presented in Chapter 2 
reference Chapter 3 where the derivations are presented in full detail in sub-sections called Folders. The 
Table of Contents of Chapter 3 lists the titles of 29 Folders along with a brief summary of the results of 
each Folder. Chapter 4 is devoted to the description of files containing FORTRAN codes used to test the 
formulae of Chapter 3 numerically. These FORTRAN codes are formatted as text files on a disk in a 
pocket at the end of this handbook. 
 
References are often designated by A&S, EMOT or Beck et al. followed by possibly a volume number, 
page number, and equation number. A&S refers to the NBS Handbook of Mathematical Functions, also 
known as AMS 55, edited by Abramowitz and Stegun. EMOT refers to a five volume series called the 
Bateman Project edited by Erdeyi, Magnus, Oberhettinger and Tricomi. Three volumes titled Higher 
Transcendental Functions (HTF) are in handbook format for many of the functions of mathematical 
physics. Two other volumes are titled Tables of Integral Transforms (TIF). Beck et al. refers to Beck’s 
book:  Heat Conduction Using Green’s Functions, Hemisphere Publishing Corp., 1992. 
 
 

Updates and Changes to the August 2003 Edition 
 
The previous edition of this work was dated August, 2003. Several changes and additions were made in 
the previous edition to make the presentation consistent and fill in gaps in the Table of Integrals and 
corresponding computer programs. 
 



Change in Notation for 1I  
In the initial stages of the research, 1 ( , , )I a b t , defined by 
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was investigated first. In subsequent investigations into other integrals with similar forms involving τ , 
it became apparent that the substitution 1/w τ=  gave analytic integrands and were the preferred form 
for manipulation. In the August 2003 edition of this work, 1 ( , , )I a b t  was documented in Folders 1and 2 
and the analytic form, documented in Folder 10, was denoted by 
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and similarly for 1 ( , , )cI a b T . However the subroutine INTEGI1 always returned 1 ( , , )I a b T  or 

1 ( , , )cI a b T (on the selection parameter KODE=1 or 2) and one had to multiply by 2 to get 1 ( , , )I a b t or 

1 ( , , )cI a b T . In this edition, we define 
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which conforms to the pattern developed for other integrals of similar form. The code for INTEGI1 was 
not changed in any way. INTEGI1 still returns values from the analytic forms which, in this edition, are 
denoted by 1 ( , , )I a b T  or 1 ( , , )cI a b T  on KODE=1 or 2. One still has to multiply the results from 
INTEGI1 by 2 to get the alternate integral forms in terms of τ  on (0,t). 1 ( , , )I a b T  and 1 ( , , )cI a b T do not 
exist in this edition.  
 
Changes and Additions to Computer Programs 
 
The table below presents the changes and additions to the computer codes that implement the formulae 
developed in Chapter 3. Any changes in the August 2003 edition not listed below were transparent and 
did not change the way the code was used. Except for the addition of new subroutines and programs and 
a couple of other minor changes, the addition of the selection parameter KODE to the call list was made 
to the existing subroutines INTEGI3, INTEGI6, INTEGP, INTEGI13 and INTEGI14 (formerly 
INTEG14). KODE=1 designates the original integral using the error function erf(*) while KODE=2 
designates the new addition for the co-error function integral using erfc(*). Each subroutine or program 
has a prologue which describes the function (or functions) being computed and should be consulted 
when updating call lists. 
 
It is apparent from the changes discussed above that there is a compatibility issue if one mixes routines 
from the two editions. Calls based on the 2003 edition mixed with the new library (AMOSSUBS.FOR + 
BECKSUBS.FOR) from this edition need to be checked for compatibility. Similar considerations apply 
for the research codes in RESEARCH.FOR. In order to make this check easier, the following table 
documents the non-transparent changes. This table will tell a user whether the calls based on the 2003 
edition will be compatible with the new library. If a user program contains a call to one of the routines 
listed in the table, then the subroutine call list in the user’s code must be modified to conform with the 
call list in the updated library in order to work properly. For the main library, AMOSSUBS.FOR + 
BECKSUBS.FOR, these call lists are listed in the first subroutine on each file. For codes taken from the 
other files, one must search the file for the subroutine that was extracted for the user’s application.  



NEW in the CHANGE column means a new routine was added to the 2003 collection to make the new 
collection for this edition. 
 
           FILE                CHANGE                 CODE NAME                            COMMENT 
 
BECKSUBS.FOR 
                                    CALL LIST               SUBROUTINE INTEGI3           KODE added 
                                    CALL LIST               SUBROUTINE INTEGI6           KODE added 
                                    CALL LIST               SUBROUTINE INTEGP            KODE added 
                                    NEW                          SUBROUTINE INTEGI2 

NEW                          SUBROUTINE INTEGI9 
 NEW                          SUBROUTINE INTEGV5 
 NEW                          SUBROUTINE INTEGI29 
 
BECKDRVR.FOR 
   NEW                          PROGRAM I2COMP 
   NEW                          PROGRAM I9COMP 
   NEW                          PROGRAM V5COMP 
   NEW                          PROGRAM PCOMP 
   NEW                          PROGRAM QCOMP 
   DELETED                 PROGRAM PQCOMP 
   NEW                          PROGRAM I29COMP 
 
RESEARCH.FOR 
   CALL LIST               SUBROUTINE INTEGI13          KODE added 
   DELETED                 SUBROUTINE INTEG14 
   NEW                          SUBROUTINE INTEGI14         Replaces INTEG14  
   DELETED                 PROGRAM I4BYSER 
   DELETED                 PROGRAM I4BYQUAD 
   DELETED                 PROGRAM J4BYSER 
   DELETED                 PROGRAM J4BYQUAD 
   NEW                          PROGRAM I4COMP 
   NEW                          PROGRAM J4COMP 
    NEW                          PROGRAM DGSCOMP 
  
AMOSSUBS.FOR 

NEW                          SUBROUTINE DQUAD8          No change in call list. 
CAPABILITY ∗                                                               See * below. 
 

AMOSDRVR.FOR 
   NO CHANGES 
 
 
* DQUAD8 was originally designed to compute quadratures on an infinite interval starting at X1 and 
progressing in steps (intervals) of length SIG. The initialization parameter INIT=0 starts the procedure 
and a convergence criterion specified by the parameter REL terminates the procedure, returning not only 
quadrature totals in QANS, but also the final point X2. The new capability allows DQUAD8 to compute 
exactly m steps of length SIG by setting INIT m= − , m>0. To cover an interval (a,b), compute SIG by 

(b-a)/mσ = . On return from DQUAD8 with no error flag and with this value of SIG, X2=b and QANS 
is the total quadrature. REL still specifies the accuracy for each of the m quadratures. 


