

Handbook
of

INTEGRALS RELATED TO

HEAT CONDUCTION AND DIFFUSION

by

Donald E. Amos

December, 2006

Copyright 2006 Donald E. Amos

ACKNOWLEDGEMENTS

This work was funded in part by

Beck Engineering Consultants Company
1935 Danbury West

Okemos, MI 48864-1873

for

Sandia National Laboratories
Purchase Order No. 30629

Kevin Dowding, Project Manager

Many of the integrals addressed in this document came from work being done by Dr.
James V. Beck and associates. Dr. Beck’s enthusiasm and support is greatly appreciated.
Credit is due Jill Bielawski for her excellent job of mathematical typing.

PREFACE

This handbook of integrals grew out of a research project carried out by Beck Engineering Consultants
Company. The research, to develop computer codes which compute solutions of the transient heat
conduction equation to high accuracy, was funded by Sandia National Laboratories. These codes were
subsequently used in code verification work to assess accuracies of more complex numeric codes. The
integrals developed in this presentation were suggested by Dr. James V. Beck and associates during the
course of the research from 2000 to 2005.

The work of Beck Engineering centered on the linear heat equation with constant coefficients in mostly
rectangular geometries in all three dimensions. While many classical problems have been solved
analytically, the solutions can achieve high accuracies with a reasonable amount of computer work only
over very limited ranges of variables, especially in the time variable. In these cases, the classical
solutions are, for the most part, only computable for the small and large times. However, newer, more
flexible methods, which were able to fill-in the intermediate times, were applied to achieve (absolute)
accuracies on the order of 1010− .

The research in this volume was directed toward numerical evaluation of diffusion related integrals in
subroutines which would return accurate answers over stated ranges of variables. In keeping with the
goal of high accuracies, all subroutines were developed in double precision arithmetic. For the IBM PC
and similar machines, this means about 16 digits. In many fundamental integrals, much effort was
devoted to achieving relative accuracy (significant digits) rather than absolute accuracy (decimal
places). Since it is difficult to compute to full precision and avoid all losses of significance, most
subroutines returned overall accuracies of 13(10) O − or better over common ranges of variables. This
specification allows several orders of magnitude latitude in the application to problems where only
accuracies of 1010− are required.

This handbook is presented in four parts. Chapter 1 presents a Table of Integrals with references to
Chapter 2 where the main formulae are presented in handbook format. Formulae presented in Chapter 2
reference Chapter 3 where the derivations are presented in full detail in sub-sections called Folders. The
Table of Contents of Chapter 3 lists the titles of 29 Folders along with a brief summary of the results of
each Folder. Chapter 4 is devoted to the description of files containing FORTRAN codes used to test the
formulae of Chapter 3 numerically. These FORTRAN codes are formatted as text files on a disk in a
pocket at the end of this handbook.

References are often designated by A&S, EMOT or Beck et al. followed by possibly a volume number,
page number, and equation number. A&S refers to the NBS Handbook of Mathematical Functions, also
known as AMS 55, edited by Abramowitz and Stegun. EMOT refers to a five volume series called the
Bateman Project edited by Erdeyi, Magnus, Oberhettinger and Tricomi. Three volumes titled Higher
Transcendental Functions (HTF) are in handbook format for many of the functions of mathematical
physics. Two other volumes are titled Tables of Integral Transforms (TIF). Beck et al. refers to Beck’s
book: Heat Conduction Using Green’s Functions, Hemisphere Publishing Corp., 1992.

Updates and Changes to the August 2003 Edition

The previous edition of this work was dated August, 2003. Several changes and additions were made in
the previous edition to make the presentation consistent and fill in gaps in the Table of Integrals and
corresponding computer programs.

Change in Notation for 1I
In the initial stages of the research, 1 (, ,)I a b t , defined by

2 /

1
0

(/)(, ,)
t

a erf bI a b t e dτ τ τ
τ

−= ∫

was investigated first. In subsequent investigations into other integrals with similar forms involving τ ,
it became apparent that the substitution 1/w τ= gave analytic integrands and were the preferred form
for manipulation. In the August 2003 edition of this work, 1 (, ,)I a b t was documented in Folders 1and 2
and the analytic form, documented in Folder 10, was denoted by

2 2

1 12

() 1(, ,) (, ,), 1/
2

 a w

T

erf bwI a b T e dw I a b t T t
w

∞
−= = =∫ ,

and similarly for 1 (, ,)cI a b T . However the subroutine INTEGI1 always returned 1 (, ,)I a b T or

1 (, ,)cI a b T (on the selection parameter KODE=1 or 2) and one had to multiply by 2 to get 1 (, ,)I a b t or

1 (, ,)cI a b T . In this edition, we define

2 2 2

2 2 2

/
1 2

0

/
1 2

0

() 1 (/)(, ,) , 1/ ,
2

() 1 (/)(, ,) , 1/ ,
2

t
a w a

T

t
c a w a

T

erf bw erf bI a b T e dw e d T t
w

erfc bw erfc bI a b T e dw e d T t
w

τ

τ

τ τ
τ

τ τ
τ

∞
− −

∞
− −

= = =

= = =

∫ ∫

∫ ∫

which conforms to the pattern developed for other integrals of similar form. The code for INTEGI1 was
not changed in any way. INTEGI1 still returns values from the analytic forms which, in this edition, are
denoted by 1 (, ,)I a b T or 1 (, ,)cI a b T on KODE=1 or 2. One still has to multiply the results from
INTEGI1 by 2 to get the alternate integral forms in terms of τ on (0,t). 1 (, ,)I a b T and 1 (, ,)cI a b T do not
exist in this edition.

Changes and Additions to Computer Programs

The table below presents the changes and additions to the computer codes that implement the formulae
developed in Chapter 3. Any changes in the August 2003 edition not listed below were transparent and
did not change the way the code was used. Except for the addition of new subroutines and programs and
a couple of other minor changes, the addition of the selection parameter KODE to the call list was made
to the existing subroutines INTEGI3, INTEGI6, INTEGP, INTEGI13 and INTEGI14 (formerly
INTEG14). KODE=1 designates the original integral using the error function erf(*) while KODE=2
designates the new addition for the co-error function integral using erfc(*). Each subroutine or program
has a prologue which describes the function (or functions) being computed and should be consulted
when updating call lists.

It is apparent from the changes discussed above that there is a compatibility issue if one mixes routines
from the two editions. Calls based on the 2003 edition mixed with the new library (AMOSSUBS.FOR +
BECKSUBS.FOR) from this edition need to be checked for compatibility. Similar considerations apply
for the research codes in RESEARCH.FOR. In order to make this check easier, the following table
documents the non-transparent changes. This table will tell a user whether the calls based on the 2003
edition will be compatible with the new library. If a user program contains a call to one of the routines
listed in the table, then the subroutine call list in the user’s code must be modified to conform with the
call list in the updated library in order to work properly. For the main library, AMOSSUBS.FOR +
BECKSUBS.FOR, these call lists are listed in the first subroutine on each file. For codes taken from the
other files, one must search the file for the subroutine that was extracted for the user’s application.

NEW in the CHANGE column means a new routine was added to the 2003 collection to make the new
collection for this edition.

 FILE CHANGE CODE NAME COMMENT

BECKSUBS.FOR
 CALL LIST SUBROUTINE INTEGI3 KODE added
 CALL LIST SUBROUTINE INTEGI6 KODE added
 CALL LIST SUBROUTINE INTEGP KODE added
 NEW SUBROUTINE INTEGI2

NEW SUBROUTINE INTEGI9
 NEW SUBROUTINE INTEGV5
 NEW SUBROUTINE INTEGI29

BECKDRVR.FOR
 NEW PROGRAM I2COMP
 NEW PROGRAM I9COMP
 NEW PROGRAM V5COMP
 NEW PROGRAM PCOMP
 NEW PROGRAM QCOMP
 DELETED PROGRAM PQCOMP
 NEW PROGRAM I29COMP

RESEARCH.FOR
 CALL LIST SUBROUTINE INTEGI13 KODE added
 DELETED SUBROUTINE INTEG14
 NEW SUBROUTINE INTEGI14 Replaces INTEG14
 DELETED PROGRAM I4BYSER
 DELETED PROGRAM I4BYQUAD
 DELETED PROGRAM J4BYSER
 DELETED PROGRAM J4BYQUAD
 NEW PROGRAM I4COMP
 NEW PROGRAM J4COMP
 NEW PROGRAM DGSCOMP

AMOSSUBS.FOR

NEW SUBROUTINE DQUAD8 No change in call list.
CAPABILITY ∗ See * below.

AMOSDRVR.FOR
 NO CHANGES

* DQUAD8 was originally designed to compute quadratures on an infinite interval starting at X1 and
progressing in steps (intervals) of length SIG. The initialization parameter INIT=0 starts the procedure
and a convergence criterion specified by the parameter REL terminates the procedure, returning not only
quadrature totals in QANS, but also the final point X2. The new capability allows DQUAD8 to compute
exactly m steps of length SIG by setting INIT m= − , m>0. To cover an interval (a,b), compute SIG by

(b-a)/mσ = . On return from DQUAD8 with no error flag and with this value of SIG, X2=b and QANS
is the total quadrature. REL still specifies the accuracy for each of the m quadratures.

