next up previous
Next: Plate, 1-D, Steady-Periodic GF Up: Helmholtz Equation: Steady-Periodic Previous: Infinite Body, 1-D, Steady-Periodic

Semi-infinite body, 1-D, Steady-Periodic GF

X10 Semi-infinite body, $0<x<\infty$, with $G=0$ (Dirichlet) at x=0.

\begin{displaymath}
G_{X10}(x,x^{\prime},\omega)=\frac{1}{2 \alpha \sigma} [e^{- \sigma \vert x-x'\vert}-e^{- \sigma \vert x+x'\vert}]
\end{displaymath}


\begin{displaymath}
\sigma=(1+\it {i})\sqrt{\frac{\omega}{2\alpha}}
\end{displaymath}

X20 Semi-infinite body, $0<x<\infty$, with $\partial{G}/\partial{x}=0$ (Neumann) at x=0.

\begin{displaymath}
G_{X20}(x,x^{\prime},\omega)=\frac{1}{2 \alpha \sigma} [e^{- \sigma \vert x-x'\vert}+e^{- \sigma \vert x+x'\vert}]
\end{displaymath}

X30 Semi-infinite body, $0<x<\infty$, with $-\it {k}\partial{G}/\partial{x}+\it {h}G=0$ (Convection) at x=0.

\begin{displaymath}
G_{X30}(x,x^{\prime},\omega)=\frac{1}{2 \alpha \sigma} [e^{- \sigma \vert x-x'\vert}+R \cdot e^{- \sigma \vert x+x'\vert}] \end{displaymath}


\begin{displaymath}
R~=~ \frac{k \sigma - h}{k \sigma + h}
\end{displaymath}



2004-08-10