next up previous
Next: Hollow Sphere, steady 1-D. Up: Radial-spherical coordinates. Steady 1-D Previous: Infinite body with a

Solid sphere,steady 1-D.

RS01 Solid sphere, 0 $ \leq$ r $ \leq$ b, with G < $ \infty$ (natural boundary) at r = 0, and G = 0 (Dirichlet) at r = b.

4$\displaystyle \pi$GRS10(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
1/r^{\prime }-1/b & \text{for }r<r^{\prime } \\
1/r-1/b & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
1/r^{\prime }-1/b & \text{for }r<r^{\prime } \\
1/r-1/b & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
1/r^{\prime }-1/b & \text{for }r<r^{\prime } \\
1/r-1/b & \text{for }r>r^{\prime }
\end{array}
}\right.$

RS02 Solid sphere, 0 $ \leq$ r $ \leq$ b, with G < $ \infty$ (natural boundary) at r = 0, and $ \partial$G/$ \partial$r = 0 (Neumann) at r = b . Note that this geometry requires a pseudo GF, denoted H. The temperature solution found from a pseudo GF requires that the total volumetric heat flow is equal to the boundary heat flow, and the spatial average temperature in the body must be supplied as a known condition.

4$\displaystyle \pi$GRS20(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
1/r^{\prime }+[r^{2}+(r^{\...
...}+(r^{\prime })^{2}]/(2b^{3}) & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
1/r^{\prime }+[r^{2}+(r^{\prime })^{2}]/(2b^{3...
...
1/r+[r^{2}+(r^{\prime })^{2}]/(2b^{3}) & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
1/r^{\prime }+[r^{2}+(r^{\p...
...}+(r^{\prime })^{2}]/(2b^{3}) & \text{for }r>r^{\prime }
\end{array}
}\right.$

RS03 Solid sphere, 0 $ \leq$ r $ \leq$ b, with G < $ \infty$ (natural boundary) at r = 0 and k$ \partial$G/$ \partial$r + h2G = 0 (convection) at r = b. Note B2 = h2b/k.

4$\displaystyle \pi$GRS03(r $\displaystyle \left\vert\vphantom{ \,r^{\prime }}\right.$ r$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,r^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
1/r^{\prime }+(1/B_{1}-1)/...
...rime } \\
1/r+(1/B_{1}-1)/b & \text{for }r>r^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
1/r^{\prime }+(1/B_{1}-1)/b & \text{for }r<r^{\prime } \\
1/r+(1/B_{1}-1)/b & \text{for }r>r^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
1/r^{\prime }+(1/B_{1}-1)/b...
...rime } \\
1/r+(1/B_{1}-1)/b & \text{for }r>r^{\prime }
\end{array}
}\right.$



Kevin D. Cole
2002-12-31