next up previous
Next: Rectangular Coordinates. Finite Bodies, Up: Rectangular Coordinates. Steady 1-D. Previous: Semi infinite body, steady

Plate, steady 1-D.

X11 Plate, G = 0 (Dirichlet) at x = 0 and x = L.

GX11(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
x(1-x^{\prime })/L & \text{f...
...\prime } \\ 
x^{\prime }(1-x)/L & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
x(1-x^{\prime })/L & \text{for }x<x^{\prime } \\ 
x^{\prime }(1-x)/L & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
x(1-x^{\prime })/L & \text{fo...
...\prime } \\ 
x^{\prime }(1-x)/L & \text{for }x>x^{\prime }
\end{array}
}\right.$    


X12 Plate, G = 0 (Dirichlet) at x = 0 and $ \partial$G/$ \partial$x = 0 (Neumann) at x = L.

GX12(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
x & \text{for }x<x^{\prime } \\ 
x^{\prime } & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
x & \text{for }x<x^{\prime } \\ 
x^{\prime } & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
x & \text{for }x<x^{\prime } \\ 
x^{\prime } & \text{for }x>x^{\prime }
\end{array}
}\right.$    


X13 Plate, G = 0 (Dirichlet) at x = 0 and k$ \partial$G/$ \partial$x + h2G = 0 (Neumann) at x = L Note B2 = h2L/k

GX13(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
x[1-B_{2}(x^{\prime }/L)/(1+...
...prime }[1-B_{2}(x/L)/(1+B_{2})] & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
x[1-B_{2}(x^{\prime }/L)/(1+B_{2})] & \text{for...
... \\ 
x^{\prime }[1-B_{2}(x/L)/(1+B_{2})] & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
x[1-B_{2}(x^{\prime }/L)/(1+B...
...prime }[1-B_{2}(x/L)/(1+B_{2})] & \text{for }x>x^{\prime }
\end{array}
}\right.$    


X21 Plate, $ \partial$G/$ \partial$x = 0 (Neumann) at x = 0 and G = 0 (Dirichlet) at x = L.

GX21(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
L-x^{\prime } & \text{for }x<x^{\prime } \\ 
L-x & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
L-x^{\prime } & \text{for }x<x^{\prime } \\ 
L-x & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
L-x^{\prime } & \text{for }x<x^{\prime } \\ 
L-x & \text{for }x>x^{\prime }
\end{array}
}\right.$    

X22 Plate, $ \partial$G/$ \partial$x = 0 (Neumann) at both sides. Note that this geometry requires a pseudo GF, denoted H. The temperature solution found from a pseudo GF requires that the total volumetric heating sums to zero and the spatial average temperature in the body must be supplied as a known condition.

HX22(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
\lbrack x^{2}+(x^{\prime })^...
...x^{2}+(x^{\prime })^{2}]/(2L)-x & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
\lbrack x^{2}+(x^{\prime })^{2}]/(2L)-x^{\prime...
...
\lbrack x^{2}+(x^{\prime })^{2}]/(2L)-x & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
\lbrack x^{2}+(x^{\prime })^{...
...x^{2}+(x^{\prime })^{2}]/(2L)-x & \text{for }x>x^{\prime }
\end{array}
}\right.$    

X23 Plate, $ \partial$G/$ \partial$x = 0 (Neumann) at x = 0 and k$ \partial$G/$ \partial$x + h2G = 0 (convection) at x = L. Note B2 = h2L/k

GX23(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
L(1+1/B_{2}-x^{\prime }/L) &...
...^{\prime } \\ 
L(1+1/B_{2}-x/L) & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
L(1+1/B_{2}-x^{\prime }/L) & \text{for }x<x^{\prime } \\ 
L(1+1/B_{2}-x/L) & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
L(1+1/B_{2}-x^{\prime }/L) & ...
...^{\prime } \\ 
L(1+1/B_{2}-x/L) & \text{for }x>x^{\prime }
\end{array}
}\right.$    

X31 Plate, - k$ \partial$G/$ \partial$x + h1G = 0 (convection) at x = 0 and G = 0 (Dirchlet) at x = L. Note B1 = h1L/k

GX31(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{
\begin{array}{cc}
(B_{1}x-B_{1}xx^{\prime}/L+L-...
...e}-B_{1}xx^{\prime}/L+L-x)/(1+B)
& \text{for }x>x^{\prime}
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
(B_{1}x-B_{1}xx^{\prime}/L+L-x^{\prime})/(1+B)
...
...}x^{\prime}-B_{1}xx^{\prime}/L+L-x)/(1+B)
& \text{for }x>x^{\prime}
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{cc}
(B_{1}x-B_{1}xx^{\prime}/L+L-x...
...e}-B_{1}xx^{\prime}/L+L-x)/(1+B)
& \text{for }x>x^{\prime}
\end{array}
}\right.$    

X32 Plate, - k$ \partial$G/$ \partial$x + h1G = 0 (convection) at x = 0 and $ \partial$G/$ \partial$x = 0 (Neumann) at x = L. Note B1 = h1L/k

GX32(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
L(1/B_{1}+x/L) & \text{for }...
... } \\ 
L(1/B_{1}+x^{\prime }/L) & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
L(1/B_{1}+x/L) & \text{for }x<x^{\prime } \\ 
L(1/B_{1}+x^{\prime }/L) & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
L(1/B_{1}+x/L) & \text{for }x...
... } \\ 
L(1/B_{1}+x^{\prime }/L) & \text{for }x>x^{\prime }
\end{array}
}\right.$    

X33 Plate, - k$ \partial$G/$ \partial$x + h1G = 0 (convection) at x = 0 and k$ \partial$G/$ \partial$x + h2G = 0 (convection) at x = L. Note B1 = h1L/k and B2 = h2L/k
GX33(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle {\frac{%
(B_{1}B_{2}x+B_{1}x-B_{1}B_{2}xx^{\prime }/L-B_{2}x^{\prime }+B_{2}L+L)}{
(B_{1}B_{2}+B_{1}+B_{2})}}$; forx < x$\scriptstyle \prime$  
  = $\displaystyle {\frac{(B_{1}B_{2}x^{\prime }+B_{1}x^{\prime }-B_{1}B_{2}xx^{\prime
}/L-B_{2}x+B_{2}L+L)}{(B_{1}B_{2}+B_{1}+B_{2})}}$; forx > x$\scriptstyle \prime$  


next up previous
Next: Rectangular Coordinates. Finite Bodies, Up: Rectangular Coordinates. Steady 1-D. Previous: Semi infinite body, steady
Kevin D. Cole
2002-12-31