next up previous
Next: Semi infinite body, steady Up: Rectangular Coordinates. Steady 1-D. Previous: Rectangular Coordinates. Steady 1-D.

Infinite body, rectangular coordinate, steady 1-D.

X00 Infinite body, - $ \infty$ < x < $ \infty$. Note that this geometry requires a pseudo GF, denoted H. The temperature solution found from a pseudo GF requires that the total volumetric heating sums to zero and the spatial average temperature in the body must be supplied as a known condition.

HX00(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
(x^{\prime }-x)/2 & \text{fo...
...{\prime } \\ 
(x-x^{\prime })/2 & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
(x^{\prime }-x)/2 & \text{for }x<x^{\prime } \\ 
(x-x^{\prime })/2 & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
(x^{\prime }-x)/2 & \text{for...
...{\prime } \\ 
(x-x^{\prime })/2 & \text{for }x>x^{\prime }
\end{array}
}\right.$    



Kevin D. Cole
2002-12-31