next up previous
Next: Infinite body with a Up: Radial-spherical coordinates. Transient 1-D. Previous: Radial-spherical coordinates. Transient 1-D.

Infinite body, spherical coordinate, transient 1-D.

RS00 Infinite body, radial spherical symmetry, 0 < r < $ \infty$.
GRS00(r, t $\displaystyle \left\vert\vphantom{ \,r^{\prime },\tau }\right.$ r$\scriptstyle \prime$,$\displaystyle \tau$ $\displaystyle \left.\vphantom{ \,r^{\prime },\tau }\right.$) = $\displaystyle {\frac{1}{8\pi
r\,r^{\prime }[\pi \alpha (t-\tau )]^{1/2}}}$  
    * $\displaystyle \left\{\vphantom{ \exp \left[ -\frac{(r-r^{\prime })^{2}}{4\alpha...
...ht] -\exp \left[ -\frac{(r+r^{\prime })^{2}}{4\alpha (t-\tau )}\right]
}\right.$exp$\displaystyle \left[\vphantom{ -\frac{(r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
}\right.$ - $\displaystyle {\frac{(r-r^{\prime })^{2}}{4\alpha (t-\tau )}}$ $\displaystyle \left.\vphantom{ -\frac{(r-r^{\prime })^{2}}{4\alpha (t-\tau )}%
}\right]$ - exp$\displaystyle \left[\vphantom{ -\frac{(r+r^{\prime })^{2}}{4\alpha (t-\tau )}}\right.$ - $\displaystyle {\frac{(r+r^{\prime })^{2}}{4\alpha (t-\tau )}}$ $\displaystyle \left.\vphantom{ -\frac{(r+r^{\prime })^{2}}{4\alpha (t-\tau )}}\right]$ $\displaystyle \left.\vphantom{ \exp \left[ -\frac{(r-r^{\prime })^{2}}{4\alpha ...
...t] -\exp \left[ -\frac{(r+r^{\prime })^{2}}{4\alpha (t-\tau )}\right]
}\right\}$  



Kevin D. Cole
2002-12-31